A Model Context Protocol (MCP) server that provides weather information via the OpenWeatherMap API. This project demonstrates how to create and use MCP servers to extend AI assistant capabilities with real-time weather data.
This project implements a local MCP server using FastMCP that allows AI assistants to access current weather conditions and forecasts for any city worldwide. The server connects to the OpenWeatherMap API and provides this data through a standardized MCP interface.
- Current Weather: Get real-time weather data for any city
- Weather Forecasts: Get forecasts for up to 15 days in the future
- Temperature Data: Includes current, minimum, and maximum temperatures
- Multiple Transport Modes: Supports both stdio and HTTP streaming modes
- OAuth 2.0 Authentication: Secure Bearer Token authentication for HTTP modes
- Docker Support: Easy deployment with Docker and Docker Compose
- Comprehensive Error Handling: Robust error handling and logging
weather-server/
├── .dockerignore # Docker build exclusions
├── .env.example # Example environment variables
├── .gitignore # Git exclusions
├── README.md # This file (root documentation)
│
└── weather_mcp/ # Main MCP server implementation
├── main.py # Server entrypoint using FastMCP
├── plugins/ # MCP plugins directory
│ └── weather.py # Weather tool implementation
├── config.yaml.example # Example configuration file
├── .env.example # Example environment variables
├── requirements.txt # Python dependencies
├── Dockerfile # Docker container definition
├── docker-compose.yml # Docker Compose configuration
├── run_server.sh # Script to run the server
└── README.md # Detailed documentation for the MCP server
- Python 3.8 or higher
- OpenWeatherMap API key (sign up at OpenWeatherMap)
-
Clone the repository:
git clone https://github.com/yourusername/weather-server.git cd weather-server/weather_mcp
-
Install dependencies:
pip install -r requirements.txt
-
Configure the server:
cp config.yaml.example config.yaml # Edit config.yaml and add your OpenWeatherMap API key
Or use environment variables:
cp .env.example .env # Edit .env and add your OpenWeatherMap API key
# Make the script executable
chmod +x run_server.sh
# Run in stdio mode (default)
./run_server.sh
# Run in HTTP streaming mode
./run_server.sh -m sse
# Run with authentication enabled
./run_server.sh -m sse -a -g
# Using Docker Compose
docker-compose up -d
# Or build and run the Docker image directly
docker build -t weather-mcp-server .
docker run -d -p 3399:3399 -e OPENWEATHERMAP_API_KEY=your_api_key_here weather-mcp-server
The server supports OAuth 2.0 Bearer Token authentication for HTTP streaming modes (SSE and streamable-http). This provides secure access control for your MCP server.
Authentication can be enabled in several ways:
-
Using environment variables:
export AUTH_ENABLED=true export AUTH_SECRET_KEY=your_secret_key_here
-
Using the .env file:
AUTH_ENABLED=true AUTH_SECRET_KEY=your_secret_key_here
-
Using config.yaml:
auth: enabled: true secret_key: your_secret_key_here
-
Using command-line options (with run_server.sh):
./run_server.sh -m sse -a -s your_secret_key_here
The project includes a token generation utility:
# Generate a token using the secret key
python weather_mcp/utils/generate_token.py --secret your_secret_key_here
# Generate a token with a specific expiration time (in seconds)
python weather_mcp/utils/generate_token.py --secret your_secret_key_here --expiry 3600
# Generate a token for a specific user
python weather_mcp/utils/generate_token.py --secret your_secret_key_here --user "user123"
You can also generate a token when starting the server:
./run_server.sh -m sse -a -g
Clients must include the Bearer Token in the Authorization header:
Authorization: Bearer your_token_here
This MCP server can be integrated with AI assistants that support the Model Context Protocol. Once connected, the assistant can use the weather tool to get weather information.
{
"tool": "weather.get_weather",
"args": {
"city": "London,uk",
"days": 0
}
}
{
"city": "London,uk",
"date": "2025-05-12",
"temperature_C": 15.8,
"min_temperature_C": 12.3,
"max_temperature_C": 18.2,
"weather": "scattered clouds"
}
The server supports these transport modes:
- stdio: Standard input/output mode (good for CLI usage)
- streamable-http: HTTP server mode with streaming support (default and recommended for web clients)
- sse: Legacy HTTP streaming mode (for backward compatibility)
The project includes Docker support for easy deployment:
- Dockerfile: Defines the container image
- docker-compose.yml: Simplifies deployment with environment variables
- .dockerignore: Optimizes Docker builds
For more detailed information about the MCP server implementation, API details, and advanced usage, please refer to the weather_mcp/README.md file.
This project is licensed under the MIT License - see the LICENSE file for details.
- FastMCP - The Python framework for building MCP servers
- OpenWeatherMap - Weather data provider