Skip to content

tomlupo/quant-methods

Repository files navigation

Quantitative Methods

A collection of quantitative finance methods and algorithms implemented in Python.

Methods

Monte Carlo Simulations

monte_carlo_simulations/

Geometric Brownian Motion (GBM) simulations comparing price paths with and without parameter uncertainty. Demonstrates how estimation error in drift parameter affects confidence intervals.

Trade Calculation with Stochastic Rounding

trade_calculation_stochastic_rounding/

Portfolio rebalancing with stochastic lot rounding. Rounds trade sizes to valid lot sizes while preserving expected values through probabilistic rounding.

Regression Methods for Index Tracking

regression_methods/

Portfolio weight optimization using different regression approaches:

  • OLS (Ordinary Least Squares)
  • Ridge (L2 regularization)
  • Lasso (L1 regularization)
  • Elastic Net (L1 + L2)

Index Tracking

index_tracking/

Jupyter notebooks demonstrating index replication and sparse portfolio optimization.

Installation

pip install -e .

Requirements

  • Python 3.9+
  • numpy, pandas, scipy, matplotlib

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages