Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -89,3 +89,5 @@ ENV/

# Rope project settings
.ropeproject

.DS_Store
5 changes: 2 additions & 3 deletions examples/03_mcmc_pull.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,13 +77,12 @@ def smear(unbinned_f, factor=10, exponent=2, scale=5):
binned_f = np.digitize(unbinned_f, binning_f)
vec_g, vec_f = model.generate_vectors(binned_g, binned_f)
llh = ff.solution.StandardLLH(tau=None,
C='thikonov',
neg_llh=False)
C='thikonov',)
llh.initialize(vec_g=vec_g,
model=model)

sol_mcmc = ff.solution.LLHSolutionMCMC()
sol_mcmc.initialize(llh=llh, model=model)
sol_mcmc.set_x0_and_bounds()
vec_f_est_mcmc, sigma_vec_f, samples, probs = sol_mcmc.fit()
vec_f_est_mcmc, sigma_vec_f, samples, probs, autocorrelation = sol_mcmc.fit()
print(vec_f_est_mcmc)
4 changes: 2 additions & 2 deletions examples/05_fact_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import numpy as np
import matplotlib

matplotlib.use('Agg')
# matplotlib.use('Agg')

from matplotlib import pyplot as plt
import matplotlib.colors as colors
Expand Down Expand Up @@ -295,7 +295,7 @@ def generate_acceptance_correction(vec_f_truth,
svd_values = tree_model_uniform.evaluate_condition()
ax.hist(bin_centers,
bins=bin_edges,
ooweights=svd_values,
weights=svd_values,
histtype='step',
label='Tree Based ({} Bins; Uniform)'.format(tree_binning.n_bins))

Expand Down
5 changes: 2 additions & 3 deletions examples/07_fact_pulls.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@ def do_single_pull(obs_array_binning,

llh = solution.StandardLLH(tau=tau,
log_f=True,
vec_acceptance=vec_acceptance,
C='thikonov')
llh.initialize(vec_g=vec_g,
model=tree_model)
Expand All @@ -83,7 +82,7 @@ def do_single_pull(obs_array_binning,
sol_mini = solution.LLHSolutionMinimizer()
sol_mini.initialize(llh=llh, model=tree_model)
sol_mini.set_x0_and_bounds(x0=x[idx_best])
best_fit, _ = sol_mini.fit(constrain_N=False)[0]
best_fit = sol_mini.fit(constrain_N=False)[0]

vec_f_str = ', '.join('{0:.2f}'.format(a)
for a in best_fit.x)
Expand All @@ -97,7 +96,7 @@ def do_single_pull(obs_array_binning,
random_state=random_state)
sol_mcmc.initialize(llh=llh, model=tree_model)
sol_mcmc.set_x0_and_bounds(x0=best_fit.x)
vec_f_est_mcmc, sigma_vec_f, sample, probs = sol_mcmc.fit()
vec_f_est_mcmc, sigma_vec_f, sample, probs, autocorrelation = sol_mcmc.fit()

vec_f_str = ', '.join('{0:.2f}'.format(a)
for a in vec_f_est_mcmc)
Expand Down
62 changes: 18 additions & 44 deletions funfolding/solution/likelihood.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,19 +229,10 @@ def evaluate_gradient(self, f):
h_unreg -= part_b
if self._tau is not None:
if self.log_f_reg:
reg_part = np.zeros(self.model.dim_f)
denom_f = f_reg + self.log_f_offset
nom_f = np.log(denom_f * self.reg_factor_f)
ln_10_squared = np.log(10)**2
pre = np.zeros((self.model.dim_f,
self.model.dim_f))
for i in range(self.model.dim_f):
for j in range(self.model.dim_f):
pre[i, j] = self._C[i, j] * nom_f[i]
pre[i, j] /= ln_10_squared * denom_f[i]
for i in range(self.model.dim_f):
reg_part[i] = np.sum(pre[i, :])
reg_part[i] += np.sum(pre[:, i])
pre = (self._C.T * (nom_f / denom_f)).T / np.log(10)**2
reg_part = np.sum(pre, axis=0) + np.sum(pre, axis=1)
else:
reg_part = np.dot(self._C, f_reg * self.reg_factor_f)
else:
Expand Down Expand Up @@ -350,53 +341,36 @@ def __init__(self, g, linear_model, tau):

def evaluate_llh(self, f):
m, n = self.linear_model.A.shape
poisson_part = 0
for i in range(m):
g_est = 0
for j in range(n):
g_est += self.linear_model.A[i, j] * f[j]
poisson_part += g_est - self.g[i] * np.log(g_est)

reg_part = 0
for i in range(n):
for j in range(n):
reg_part += self.C[i, j] * f[i] * f[j]
reg_part *= 0.5 * self.tau
g_est = np.dot(self.linear_model.A * f)
poisson_part = np.sum(g_est - self.g * np.log(g_est))
reg_part = np.dot(np.dot(self.C, f), f) * 0.5 * self.tau
return reg_part - poisson_part

def evaluate_gradient(self, f):
m, n = self.linear_model.A.shape
gradient = np.zeros(n)
g_est = np.dot(self.linear_model.A, f)
for k in range(n):
poisson_part = 0
for i in range(m):
g_est = 0
for j in range(n):
g_est += self.linear_model.A[i, j] * f[j]
A_ik = self.linear_model.A[i, k]
poisson_part += A_ik - (self.g[i] * A_ik) / g_est
c = 0
for i in range(n):
c += self.C[i, k] * f[i]
A_k = self.linear_model.A[:, k]
poisson_part = np.sum(A_k - (self.g * A_k) / g_est)

c = np.dot(self.C[:, k], f)
reg_part = self.tau * c
gradient[k] = reg_part - poisson_part
return gradient

def evaluate_hessian(self, f):
m, n = self.linear_model.A.shape
hess = np.zeros((n, n))
for k in range(n):
for l in range(n):
denominator = np.dot(self.linear_model.A, f)
for i in range(n):
for j in range(n):
poisson_part = 0
for i in range(m):
A_ik = self.linear_model.A[i, k]
A_il = self.linear_model.A[i, l]
nominator = self.g[i] * A_ik * A_il
denominator = 0
for j in range(n):
denominator += self.linear_model.A[i, j] * f[j]
poisson_part += nominator / denominator**2
hess[k, l] = poisson_part + self.tau * self.C[k, l]
A_i = self.linear_model.A[:, i]
A_j = self.linear_model.A[:, j]
nominator = self.g * A_i * A_j
poisson_part = np.sum(nominator / denominator**2)
hess[i, j] = poisson_part + self.tau * self.C[i, j]
return hess


Expand Down
4 changes: 1 addition & 3 deletions funfolding/visualization/visualize_tree_binning.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,7 @@ def plot_hexbins(ax,
**hex_kwargs)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="8%", pad=0.05)
cb = matplotlib.colorbar.ColorbarBase(cax,
cmap=cmap,
norm=norm)
cb = cax.figure.colorbar(norm=norm, cmap=cmap)
return cb


Expand Down