Skip to content

Free Transformer Architecture - an extension of the decoder Transformer that conditions its generative process on random latent variables which are learned without supervision

License

Notifications You must be signed in to change notification settings

udapy/free-transformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

11 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Free Transformer

PyPI version Python 3.11+ License: MIT Documentation Code style: black

Free Transformer: A Llama-style decoder architecture with explicit latent plans, conditional VAE training, and benchmark comparisons against standard Transformers.

Designed for efficient PyTorch training on modern GPUs with full FSDP support and modern optimizations.

πŸ“– Complete Documentation | πŸš€ Quick Start Guide | πŸ—οΈ Architecture Details


What Is the Free Transformer?

Traditional autoregressive Transformers generate each token by conditioning only on the sequence so far ("reactive" behavior). Free Transformer introduces a latent planning mechanismβ€”first choosing a stochastic abstract plan (Z), then generating tokens to fit that plan.
This scalable conditional VAE architecture maintains high-level coherence, improves controllable generation, and enables richer sequence modeling.

Architecture Overview

free transformer architecture - high level


Features

πŸ—οΈ Architecture

  • Llama-style backbone: RMSNorm, SwiGLU, RoPE, Grouped-Query Attention (GQA)
  • Latent Planning: Explicit plan variable Z with differentiable binary coding
  • Conditional VAE: Reconstruction + KL loss with free bits regularization

⚑ Performance & Scaling

  • FSDP Support: Multi-GPU training with PyTorch Fully Sharded Data Parallel
  • Mixed Precision: Automatic Mixed Precision (AMP) with gradient scaling
  • Memory Efficient: Gradient checkpointing and optimized attention patterns
  • Modern Optimizations: bfloat16, efficient parameter sharding

πŸ”§ Development & Training

  • Flexible Training: Switchable inference/training flows with mode selection
  • Synthetic + Real Data: Fast prototyping with built-in synthetic data generation
  • Comprehensive Testing: Unit/integration tests, benchmark comparisons
  • Quality Assurance: Type checking, linting, formatting, CI-ready

πŸ“¦ Usability

  • Extensible API: Modular classes, CLI scripts, YAML configuration
  • Docker Support: Containerized demos and development environment
  • Documentation: API references, architecture guides, examples

Installation

From PyPI (Recommended)

pip install free-transformer

From Source

Using UV (recommended):

# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh

# Clone and install
git clone https://github.com/udapy/free-transformer.git
cd free-transformer
uv venv --python 3.12
source .venv/bin/activate
uv pip install -e ".[dev]"

Using pip:

git clone https://github.com/udapy/free-transformer.git
cd free-transformer
pip install -e ".[dev]"

OR

uv run pip install free-transformer

πŸ“‹ Detailed installation instructions: Installation Guide


Quick Start

🐳 Docker (Fastest)

The fastest way to try Free Transformer:

git clone https://github.com/udapy/free-transformer.git
cd free-transformer
docker-compose up free-transformer-demo

🐍 Python API

from free_transformer import FreeTransformer, ModelConfig

# Create and train a model
config = ModelConfig(vocab_size=1000, hidden_dim=128, num_layers=6, latent_dim=8)
model = FreeTransformer(config)

# Training mode
import torch
tokens = torch.randint(0, 1000, (2, 128))
logits, z_logits = model(tokens, mode='training')

# Generation
generated = model.generate(tokens[:, :10], max_new_tokens=20)

πŸš€ Command Line

# Generate synthetic data and run demo
make demo

# Train models separately
make train-baseline  # Standard Transformer
make train-free      # Free Transformer
make compare         # Compare results

🎯 Complete tutorial: Quick Start Guide


Manual Installation & Quick Start Demo

  1. Generate Small Synthetic Data

    make generate-data-small
  2. Train Baseline Transformer

    make train-baseline
  3. Train Free Transformer

    make train-free
  4. Run Model Comparison

    make compare

Or run the full pipeline:

make demo

Check results in:

  • checkpoints/baseline/
  • checkpoints/free/
  • results/comparison/results.json

Key Features Comparison

Feature Standard Transformer Free Transformer
Generation Reactive (token-by-token) Plan-then-generate
Coherence Local Global + Local
Controllability Limited High (via plan manipulation)
Training Cross-entropy loss Conditional VAE loss
Memory Baseline +10-15% (inference)
Speed Baseline -5-10% (inference)

πŸ”¬ Detailed comparison: Architecture Overview


Repository Structure

free-transformer/
β”œβ”€β”€ src/free_transformer/
β”‚   β”œβ”€β”€ model.py
β”‚   β”œβ”€β”€ baseline.py
β”‚   β”œβ”€β”€ encoder.py
β”‚   β”œβ”€β”€ latent.py
β”‚   β”œβ”€β”€ injection.py
β”‚   β”œβ”€β”€ losses.py
β”‚   β”œβ”€β”€ synthetic_data.py
β”‚   β”œβ”€β”€ train_utils.py
β”‚   └── config.py
β”œβ”€β”€ examples/
β”‚   β”œβ”€β”€ train_baseline.py
β”‚   β”œβ”€β”€ train_free.py
β”‚   β”œβ”€β”€ eval_compare.py
β”‚   └── generate_data.py
β”œβ”€β”€ configs/
β”‚   β”œβ”€β”€ baseline.yaml
β”‚   └── free_transformer.yaml
β”œβ”€β”€ docker/
β”‚   β”œβ”€β”€ demo.sh
β”‚   └── README.md
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ unit/
β”‚   β”œβ”€β”€ integration/
β”‚   └── test_comparison.py
β”œβ”€β”€ docs/
β”œβ”€β”€ Dockerfile
β”œβ”€β”€ Dockerfile.cpu
β”œβ”€β”€ docker-compose.yml
β”œβ”€β”€ Makefile
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ .python-version
β”œβ”€β”€ LICENSE
└── README.md

Testing & Quality

Run all tests:

make test

Quality checks:

make quality

Advanced Features

πŸš€ Multi-GPU Training

# FSDP training with automatic GPU detection
make train-free-fsdp

# Custom distributed training
torchrun --nproc_per_node=auto examples/train_free.py --use-fsdp

πŸ“Š Flexible Data

  • HuggingFace datasets integration
  • Built-in synthetic data generation
  • Custom data loading pipelines

πŸ”§ Extensible Architecture

  • Modular components for easy customization
  • Custom loss functions and training schedules
  • Plugin system for new features

πŸ“š Learn more: Training Guide | Multi-GPU Setup


Documentation

πŸ“– Complete Documentation

Quick Links

Local Documentation

# Serve documentation locally
make docs-serve
# Open http://127.0.0.1:8000

License

MIT License β€” see LICENSE


Contributing

We welcome contributions! Please see our Contributing Guide for details.

Quick Development Setup

git clone https://github.com/udapy/free-transformer.git
cd free-transformer
make install-all  # Install with all dependencies
make test         # Run tests
make quality      # Check code quality

Before Submitting

  • βœ… Tests pass: make test
  • βœ… Code quality: make quality
  • βœ… Documentation builds: make docs-build

πŸ“‹ Full guidelines: Contributing Guide


FAQ

Can I use this for real-world (non-synthetic) data?
Yes! Edit configs and use HuggingFace datasets.

How do I run distributed training?
Use provided CLI flags or edit config. See docs and Makefile.

How do I change architecture parameters?
Edit YAML config files for layer size, latent dim, number of blocks, etc.

Can I run this without installing dependencies locally?
Yes! Use Docker: docker-compose up free-transformer-demo for a complete demo.

What if I don't have a GPU?
Use the CPU Docker image: make docker-build-cpu && make docker-run-cpu


Citation

If you use Free Transformer in your research, please cite:

@software{free_transformer,
  title={Free Transformer: Explicit Latent Planning for Autoregressive Generation},
  author={Phalak, Uday},
  year={2024},
  url={https://github.com/udapy/free-transformer},
  version={0.1.0}
}

Links


Free Transformer - Bringing explicit planning to autoregressive generation

Documentation β€’ PyPI β€’ GitHub

About

Free Transformer Architecture - an extension of the decoder Transformer that conditions its generative process on random latent variables which are learned without supervision

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published