Skip to content

Commit 17b0f71

Browse files
authored
SKU-110K CVPR2019 Dataset Auto-Download (#3167)
* SKU-110K CVPR2019 Dataset Auto-Download This PR adds the **SKU-110K CVPR2019 Dataset** https://github.com/eg4000/SKU110K_CVPR19 to the list of YOLOv5 🚀 auto-download list. - [x] [COCO](https://cocodataset.org/#home) - [x] [COCO128](https://www.kaggle.com/ultralytics/coco128) - [x] [VOC](http://host.robots.ox.ac.uk/pascal/VOC/) - [x] [Argoverse-HD](http://www.cs.cmu.edu/~mengtial/proj/streaming/) - [x] [VisDrone2019-DET](https://github.com/VisDrone/VisDrone-Dataset) - [x] [GlobalWheat-2020](http://www.global-wheat.com/) - [ ] [KITTI](https://www.kaggle.com/twaldo/kitti-object-detection) - [x] [SKU110](https://github.com/eg4000/SKU110K_CVPR19) (grocery store items) - [ ] [CityScapes](https://www.cityscapes-dataset.com/) - [x] [Objects365](https://www.objects365.org/overview.html) - [ ] [OpenImages](https://storage.googleapis.com/openimages/web/index.html) ```yaml # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 # Train command: python train.py --data SKU-110K.yaml # Default dataset location is next to YOLOv5: # /parent_folder # /datasets/SKU-110K # /yolov5 ``` * Update SKU-110K.yaml * Update SKU-110K.yaml
1 parent 06372b1 commit 17b0f71

File tree

1 file changed

+52
-0
lines changed

1 file changed

+52
-0
lines changed

data/SKU-110K.yaml

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
2+
# Train command: python train.py --data SKU-110K.yaml
3+
# Default dataset location is next to YOLOv5:
4+
# /parent_folder
5+
# /datasets/SKU-110K
6+
# /yolov5
7+
8+
9+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
10+
train: ../datasets/SKU-110K/train.txt # 8219 images
11+
val: ../datasets/SKU-110K/val.txt # 588 images
12+
test: ../datasets/SKU-110K/test.txt # 2936 images
13+
14+
# number of classes
15+
nc: 1
16+
17+
# class names
18+
names: [ 'object' ]
19+
20+
21+
# download command/URL (optional) --------------------------------------------------------------------------------------
22+
download: |
23+
import shutil
24+
from tqdm import tqdm
25+
from utils.general import np, pd, Path, download, xyxy2xywh
26+
27+
# Download
28+
datasets = Path('../datasets') # download directory
29+
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
30+
download(urls, dir=datasets, delete=False)
31+
32+
# Rename directories
33+
dir = (datasets / 'SKU-110K')
34+
if dir.exists():
35+
shutil.rmtree(dir)
36+
(datasets / 'SKU110K_fixed').rename(dir) # rename dir
37+
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
38+
39+
# Convert labels
40+
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
41+
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
42+
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
43+
images, unique_images = x[:, 0], np.unique(x[:, 0])
44+
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
45+
f.writelines(f'./images/{s}\n' for s in unique_images)
46+
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
47+
cls = 0 # single-class dataset
48+
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
49+
for r in x[images == im]:
50+
w, h = r[6], r[7] # image width, height
51+
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
52+
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label

0 commit comments

Comments
 (0)