Releases: uxlfoundation/scikit-learn-intelex
Intel® Extension for Scikit-learn* 2025.1.0
Intel® Extension for Scikit-learn* is happy to introduce 2025.1.0 release!
🚨 What's New
- Introduced new Intel® Extension for Scikit-learn* functionality:
- Enabled accelerated Linear Regression for overdetermined systems
- Enabled hyperparameter support for Random Forest classifier inference
- Enabled serialization in
daal4py
algorithm classes
🪲 Bug Fixes
- Fixed int overflow in FTI model convertor
- Updated
BasicStatistics
andIncrementalBasicStatistics
to follow additional sklearn conventions - Fixed
n_jobs
support coverage to indirectly-supported oneDAL methods - Fixed KMeans
score
check in_onedal_*_supported
andn_jobs
support forscore
- Corrected skips in design rule checks (
test_common.py
) caused by fragilewhitelist_to_blacklist
- Fixed
test_estimators[LogisticRegression()-check_estimators_unfitted]
conformance for gpu support - Updated functional support fallback logic for a DPNP/DPCTL ndarray inputs
- Fixed an issue in aliased
_onedal_cpu_supported
and_onedal_gpu_supported
infit_check_before_support_check
- Fixed logic of k-NN algos
kneighbors()
call whenalgorithm='brute'
and fit with GPU
🔨 Library Engineering
- Added Python 3.13 support for Intel® Extension for Scikit-learn* packages
- Added Sklearn 1.6 support for Intel® Extension for Scikit-learn* packages
Acknowledgements
Thanks to everyone who helped us make 2025.1.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @david-cortes-intel, @icfaust, @napetrov, @maria-Petrova, @homksei, @ahuber21, @ethanglaser, @samir-nasibli, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2025.0.0...2025.1.0
Intel® Extension for Scikit-learn* 2025.0.0
Intel® Extension for Scikit-learn* is happy to introduce 2025.0.0 release!
🚨 What's New
- Introduced new Intel® Extension for Scikit-learn* functionality:
- Enabled functional support for Array API
- k-Means algorithm is moved out of preview namespace
- SHAP value support for XGBoost's binary classification models
- SPMD interfaces support:
IncrementalLinearRegression
,IncrementalPCA
,IncrementalEmpiricalCovariance
🪲 Bug Fixes
- Fix issues with sklearn conformance for preview Ridge for 2024.6.0
- Fix on preview ridge tests having too little error tolerance for coefficients assertions
- Fix for Logistic Regression loss scaling
- Fix to prevent
support_usm_ndarray
from changing queue if explicitly provided - Fix Multivariate Ridge Regression coefficients
- Fix circular import in daal4py/sklearnex device_offloading
- Align sklearnex
BasicStatistics._onedal_fit
with other algos
❌ Deprecation Notice
- Removed Python 3.8 support
Acknowledgements
Thanks to everyone who helped us make 2025.0.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @icfaust, @napetrov, @maria-Petrova, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @emmwalsh, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam, @david-cortes-intel
Full Changelog: 2024.7.0...2025.0.0
Intel® Extension for Scikit-learn* 2024.7.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.7.0 release!
🚨 What's New
- Introduced new Intel® Extension for Scikit-learn* functionality:
- Sparse data support for
LogisticRegression
Basic Statistic
API improvement- Added
random_state
warning to SVM probability estimates - Unified daal4py and sklearnex builds
- Sparse data support for
🪲 Bug Fixes
- Fix issues with sklearn conformance for preview Ridge for 2024.6.0
- Fix on preview ridge tests having too little error tolerance for coefficients assertions
- Fix for Logistic Regression loss scaling
- Fix to prevent
support_usm_ndarray
from changing queue if explicitly provided - Fix Multivariate Ridge Regression coefficients
- Fix circular import in daal4py/sklearnex device_offloading
- Align sklearnex
BasicStatistics._onedal_fit
with other algos
❌ Deprecation Notice
- Removed Python 3.8 support
Acknowledgements
Thanks to everyone who helped us make 2024.7.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @icfaust, @napetrov, @maria-Petrova, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @emmwalsh, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2024.6.0...2024.7.0
Intel® Extension for Scikit-learn* 2024.6.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.6.0 release!
🚨 What's New
- Introduced new Intel® Extension for Scikit-learn* functionality:
Incremental PCA
algorithm- NumPy 2.0 support
- scikit-learn 1.5 support
- CSR data support in
Basic Statistics
algorithm
🪲 Bug Fixes
- Fix incorrect numpy to table conversion on Windows
- Fix issues with dpnp/dpctl regressor score method
Acknowledgements
Thanks to everyone who helped us make 2024.6.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @icfaust, @napetrov, @maria-Petrova, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @emmwalsh, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2024.5.0...2024.6.0
Intel® Extension for Scikit-learn* 2024.5.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.5.0 release!
🚨 What's New
- Introduced new Intel® Extension for Scikit-learn* functionality:
IncrementalLinearRegression
interfaceIncrementalEmpiricalCovariance
interface topatch_map
🪲 Bug Fixes
- Fix dpnp/dpctl F-contiguous data processing
Acknowledgements
Thanks to everyone who helped us make 2024.5.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @icfaust, @napetrov, @maria-Petrova, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @emmwalsh, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2024.4.0...2024.5.0
Intel® Extension for Scikit-learn* 2024.4.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.4.0 release!
🚨 What's New
-
Introduced new Intel® Extension for Scikit-learn* functionality:
IncrementalBasicStatistics
interface- Added
_n_inner_iter
attribute for Logistic Regression - Added
assume_centered
capability toEmpiricalCovariance
-
Improved Intel® Extension for Scikit-learn* performance for the following algorithms:
- PCA
🪲 Bug Fixes
- Fix
sample_weight
check forIncrementalBasicStatistics
- Fix dpnp/dpctl slowdown in
fit
method of neighbors algorithms
Acknowledgements
Thanks to everyone who helped us make 2024.4.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @icfaust, @napetrov, @maria-Petrova, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @emmwalsh, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2024.3.0...2024.4.0
Intel® Extension for Scikit-learn* 2024.3.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.3.0 release!
🚨 What's New
-
Introduced new Intel® Extension for Scikit-learn* functionality:
model_selection
in sklearnex namespace- SPMD backend library is separated from dpc backend
- PCA algorithm is moved out of preview namespace
-
Improved Intel® Extension for Scikit-learn* performance for the following algorithms:
- PCA
🪲 Bug Fixes
- Fix
test_patching
routines for intelex-only sklearnex estimators - Update sklearnex init based on SPMD backend changes
- Fix import error by adding conditional check of
OFF_ONEDAL_IFACE
flag when importing onedal
❌ Deprecation Notice
- Sklearn estimators in onedal4py
LinReg
andk-Means
algorithms is deprecated for usage
Acknowledgements
Thanks to everyone who helped us make 2024.3.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @icfaust, @napetrov, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @olegkkruglov, @razdoburdin, @maria-Petrova, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2024.2.0...2024.3.0
Intel® Extension for Scikit-learn* 2024.2.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.2.0 release!
🚨 What's New
- Introduced new Intel(R) Extension for Scikit-learn* functionality:
- Incremental Covariance algorithm
- Logistic Regression algorithm is moved out of preview namespace
- SPMD interfaces support: Logistic Regression, Covariance
🔨 Library Engineering
- Enabled scikit-learn 1.4 support
🪲 Bug Fixes
- Adjusted
n_jobs
parameter setting - Updated DPCPP detection in setup
- Fix of k-Means SPMD timeout
- Correct disabling of CatBoost SHAP
- Fix
LocalOutlierFactor
kneighbors method
Acknowledgements
Thanks to everyone who helped us make 2024.2.0 release possible!
@Alexsandruss, @icfaust, @napetrov, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @olegkkruglov, @razdoburdin, @maria-Petrova, @avolkov-intel
Full Changelog: 2024.1.0...2024.2.0
Intel® Extension for Scikit-learn* 2024.1.0
Intel® Extension for Scikit-learn* is happy to introduce 2024.1.0 release!
🚨 What's New
- New Intel® Extension for Scikit-learn* functionality:
- SHAP support for symmetric CatBoost models
- Added oneDAL LinReg and Covariance hyperparameters API
- Added LogisticRegression interface to the preview section
- Initial support of
n_jobs
parameter
Acknowledgements
Thanks to everyone who helped us make 2024.1.0 release possible!
@Alexsandruss, @icfaust, @napetrov, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @olegkkruglov, @razdoburdin, @KulikovNikita, @maria-Petrova, @avolkov-intel
Full Changelog: 2024.0.1...2024.1.0
Intel® Extension for Scikit-learn* 2024.0.1
Intel® Extension for Scikit-learn* is happy to introduce 2024.0.1 release!
🚨 What's New
- New Intel(R) Extension for Scikit-learn* functionality:
- Linear Regression and ensemble algorithms are moved out of preview namespace
- New Model Builders functionality:
- SHAP calculation is added to GBT regression
🔨 Library Engineering
- Added Python 3.12 support for daal4py and Intel(R) Extension for Scikit-learn* packages
📚 Support Materials
Faster XGBoost*, LightGBM, and CatBoost Inference on the CPU
PS-S3-Ep23-with-scikit-learn-intelex
pss3e23 fusion_model with scikit-learn-intelex
PS S3E25: Faster regression tuning with sklearnex
🔀 Adoption
Acknowledgements
Thanks to everyone who helped us make 2024.0.1 release possible!
@Alexsandruss, @icfaust, @napetrov, @ahuber21, @ethanglaser, @samir-nasibli, @aepanchi, @olegkkruglov, @razdoburdin, @KulikovNikita, @maria-Petrova, @avolkov-intel