Skip to content

vaishnavibhutada/model_evaluation_metrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

model_evaluation_metrics

πŸ“Š Model Evaluation Metrics

πŸ“Œ Overview

This repository demonstrates the use of various metrics and scoring techniques to evaluate the performance of predictive models. It covers both Regression and Classification model evaluations using Python libraries like Scikit-learn, Matplotlib, and Seaborn.

πŸ” Key Features

Regression Analysis: Computes MAE, MSE, RMSE, and RΒ² Score.

Binary Classification Metrics: Evaluates models using Accuracy, Precision, Recall, F1-score, and Confusion Matrix.

Graph Plotting: Visualizes model performance using line plots, scatter plots, and confusion matrices.

πŸš€ Getting Started

Clone the repository:

git clone https://github.com/vaishnavibhutada/model_evaluation_metrics.git cd model_evaluation_metrics

Install dependencies:

pip install -r requirements.txt

Run the notebook or scripts:

jupyter notebook model_evaluation_metrics.ipynb

πŸ“Š Visualization Examples

Regression Error Plots

Confusion Matrix for Classification

πŸ›  Technologies Used

Python 🐍

Pandas

NumPy

Scikit-learn

Matplotlib

Seaborn

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published