Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions code/nnv/engine/nn/layers/Conv2DLayer.m
Original file line number Diff line number Diff line change
Expand Up @@ -519,19 +519,19 @@ function set_name(obj, name)
end

% compute output sets
if ~isa(input.V, 'gpuArray')
c = vl_nnconv(input.V(:,:,:,1), obj.Weights, obj.Bias, 'Stride', obj.Stride, 'Pad', obj.PaddingSize, 'Dilate', obj.DilationFactor);
V = vl_nnconv(input.V(:,:,:,2:input.numPred + 1), obj.Weights, [], 'Stride', obj.Stride, 'Pad', obj.PaddingSize, 'Dilate', obj.DilationFactor);
% if ~isa(input.V, 'gpuArray')
% c = vl_nnconv(input.V(:,:,:,1), obj.Weights, obj.Bias, 'Stride', obj.Stride, 'Pad', obj.PaddingSize, 'Dilate', obj.DilationFactor);
% V = vl_nnconv(input.V(:,:,:,2:input.numPred + 1), obj.Weights, [], 'Stride', obj.Stride, 'Pad', obj.PaddingSize, 'Dilate', obj.DilationFactor);
% c = dlconv(dlarray(input.V(:,:,:,1), "SSC"), obj.Weights, obj.Bias, 'Stride', obj.Stride, 'Padding', obj.PaddingSize, 'DilationFactor', obj.DilationFactor);
% V = dlconv(dlarray(input.V(:,:,:,2:input.numPred + 1), "SSCB"), obj.Weights, 0, 'Stride', obj.Stride, 'Padding', obj.PaddingSize, 'DilationFactor', obj.DilationFactor);
% c = extractdata(c);
% V = extractdata(V);
else
c = dlconv(dlarray(input.V(:,:,:,1), "SSC"), obj.Weights, obj.Bias, 'Stride', obj.Stride, 'Padding', obj.PaddingSize, 'DilationFactor', obj.DilationFactor);
V = dlconv(dlarray(input.V(:,:,:,2:input.numPred + 1), "SSCB"), obj.Weights, 0, 'Stride', obj.Stride, 'Padding', obj.PaddingSize, 'DilationFactor', obj.DilationFactor);
c = extractdata(c);
V = extractdata(V);
end
% else
c = dlconv(dlarray(input.V(:,:,:,1), "SSC"), obj.Weights, obj.Bias, 'Stride', obj.Stride, 'Padding', obj.PaddingSize, 'DilationFactor', obj.DilationFactor);
V = dlconv(dlarray(input.V(:,:,:,2:input.numPred + 1), "SSCB"), obj.Weights, 0, 'Stride', obj.Stride, 'Padding', obj.PaddingSize, 'DilationFactor', obj.DilationFactor);
c = extractdata(c);
V = extractdata(V);
% end
Y = cat(4, c, V);
S = ImageStar(Y, input.C, input.d, input.pred_lb, input.pred_ub);

Expand Down
8 changes: 7 additions & 1 deletion code/nnv/engine/nn/layers/GlobalAveragePooling2DLayer.m
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,14 @@
numOutputs = 1;
inputNames = {'in1'};
outputNames = {'out'};
case 0
name = 'global_average_pooling_2d';
numInputs = 1;
numOutputs = 1;
inputNames = {'in1'};
outputNames = {'out'};
otherwise
error('Invalid number of input arguments, should be 1 or 5');
error('Invalid number of input arguments, should be 0, 1 or 5');
end

if ~ischar(name)
Expand Down
14 changes: 7 additions & 7 deletions code/nnv/engine/nn/layers/TransposedConv2DLayer.m
Original file line number Diff line number Diff line change
Expand Up @@ -255,13 +255,13 @@
end

% compute output sets
if isa(input.V, 'gpuArray')
c = extractdata(dltranspconv(dlarray(input.V(:,:,:,1)), obj.Weights, obj.Bias, "Stride", obj.Stride, "Cropping", obj.CroppingSize,"DataFormat",'SSCU'));
V = extractdata(dltranspconv(dlarray(input.V(:,:,:,2:input.numPred + 1)), obj.Weights, 0, "Stride", obj.Stride, "Cropping", obj.CroppingSize,"DataFormat",'SSCU'));
else
c = vl_nnconvt(input.V(:,:,:,1), obj.Weights, obj.Bias, 'Upsample', obj.Stride, 'Crop', obj.CroppingSize);
V = vl_nnconvt(input.V(:,:,:,2:input.numPred + 1), obj.Weights, [], 'Upsample', obj.Stride, 'Crop', obj.CroppingSize);
end
% if isa(input.V, 'gpuArray')
c = extractdata(dltranspconv(dlarray(input.V(:,:,:,1)), obj.Weights, obj.Bias, "Stride", obj.Stride, "Cropping", obj.CroppingSize,"DataFormat",'SSCU'));
V = extractdata(dltranspconv(dlarray(input.V(:,:,:,2:input.numPred + 1)), obj.Weights, 0, "Stride", obj.Stride, "Cropping", obj.CroppingSize,"DataFormat",'SSCU'));
% else
% c = vl_nnconvt(input.V(:,:,:,1), obj.Weights, obj.Bias, 'Upsample', obj.Stride, 'Crop', obj.CroppingSize);
% V = vl_nnconvt(input.V(:,:,:,2:input.numPred + 1), obj.Weights, [], 'Upsample', obj.Stride, 'Crop', obj.CroppingSize);
% end
Y = cat(4, c, V);
S = ImageStar(Y, input.C, input.d, input.pred_lb, input.pred_ub);

Expand Down
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@


%% test 1: constructor
L1 = GlobalAveragePooling2DLayer();


%% test 2: inference
L1 = GlobalAveragePooling2DLayer();
x = load('one_image.mat');
x = x.one_image;
L1.evaluate(x);


%% test 3: equivalence (inference)
L1 = GlobalAveragePooling2DLayer();
x = load('one_image.mat');
x = x.one_image;
y = L1.evaluate(x);

dlX = dlarray(x, 'SSBC');
dlY = avgpool(dlX,'global');

assert(all(dlY == y, 'all'));

%% test 4: inference, higher dimension

miniBatchSize = 10;
inputSize = [5 5];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);

L1 = GlobalAveragePooling2DLayer();
Y = L1.evaluate(X);

dlX = dlarray(X,'SSCB');
dlY = avgpool(dlX,'global');
dlY = extractdata(dlY);

assert(all(dlY == Y, 'all'));

%% test 5: reachability

x = load('one_image.mat');
X = x.one_image;

lb = X - 0.1;
ub = X + 0.1;
IS = ImageStar(lb,ub);

L1 = GlobalAveragePooling2DLayer();
Y = L1.evaluate(X);
Yset = L1.reach(IS,'approx-star');

[LB,UB] = Yset.estimateRanges;

assert(all(LB <= Y,'all'))
assert(all(UB >= Y,'all'))

%% test 6: reach (sound)

N = 100; % random samples

x = load('one_image.mat');
X = x.one_image;

lb = X - 0.1;
ub = X + 0.1;
IS = ImageStar(lb,ub);
x_samples = IS.sample(N);

L1 = GlobalAveragePooling2DLayer();
Yset = L1.reach(IS,'approx-star');
[LB,UB] = Yset.estimateRanges;

for i=1:N
xi = x_samples{i};
Yi = L1.evaluate(xi);
assert(all(LB <= Yi,'all'))
assert(all(UB >= Yi,'all'))
end


%% test 7: reachability

miniBatchSize = 1;
inputSize = [5 5];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);

lb = X - 0.1;
ub = X + 0.1;
IS = ImageStar(lb,ub);

L1 = GlobalAveragePooling2DLayer();
Y = L1.evaluate(X);
Yset = L1.reach(IS,'approx-star');

[LB,UB] = Yset.estimateRanges;

assert(all(LB <= Y,'all'))
assert(all(UB >= Y,'all'))

%% test 8: reach (sound)

N = 200; % random samples

miniBatchSize = 1;
inputSize = [5 5];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);

lb = X - 0.1;
ub = X + 0.1;
IS = ImageStar(lb,ub);

x_samples = IS.sample(N);

L1 = GlobalAveragePooling2DLayer();
Yset = L1.reach(IS,'approx-star');
[LB,UB] = Yset.estimateRanges;

for i=1:N
xi = x_samples{i};
Yi = L1.evaluate(xi);
assert(all(LB <= Yi,'all'))
assert(all(UB >= Yi,'all'))
end

Empty file.
Loading