|
| 1 | +module vibe.container.vector; |
| 2 | + |
| 3 | +import vibe.container.internal.rctable; |
| 4 | +import vibe.container.internal.utilallocator; |
| 5 | + |
| 6 | +import std.algorithm.comparison : max; |
| 7 | +import std.algorithm.mutation : swap; |
| 8 | + |
| 9 | + |
| 10 | +/** Represents a deterministically allocated vector/array type. |
| 11 | +
|
| 12 | + The underlying buffer is allocated in powers of two and uses copy-on-write |
| 13 | + to enable value semantics without requiring to copy data when passing |
| 14 | + copies of the vector around. |
| 15 | +*/ |
| 16 | +struct Vector(T, Allocator = GCAllocator) |
| 17 | +{ |
| 18 | + private { |
| 19 | + alias Table = RCTable!(T, Allocator); |
| 20 | + Table m_table; |
| 21 | + size_t m_length; |
| 22 | + } |
| 23 | + |
| 24 | + static if (!is(typeof(Allocator.instance))) { |
| 25 | + this(Allocator allocator) |
| 26 | + { |
| 27 | + m_table = Table(allocator); |
| 28 | + } |
| 29 | + } |
| 30 | + |
| 31 | + |
| 32 | + /// Determines whether the vector is currently empty. |
| 33 | + bool empty() const { return m_length == 0; } |
| 34 | + |
| 35 | + /** The current number of elements. |
| 36 | +
|
| 37 | + Note that reducing the length of a vector will not free the underlying |
| 38 | + buffer, but instead will only make use of a smaller portion. This |
| 39 | + enables increasing the length later without having to re-allocate. |
| 40 | + */ |
| 41 | + size_t length() const { return m_length; } |
| 42 | + /// ditto |
| 43 | + void length(size_t count) |
| 44 | + @safe { |
| 45 | + if (count == m_length) return; |
| 46 | + |
| 47 | + if (count <= m_table.length) { |
| 48 | + if (count < m_length) { |
| 49 | + if (() @trusted { return !m_table.isUnique(); } ()) { |
| 50 | + auto new_table = () @trusted { return m_table.createNew(allocationCount(count)); } (); |
| 51 | + new_table[0 .. count] = m_table[0 .. count]; |
| 52 | + swap(m_table, new_table); |
| 53 | + } else m_table[count .. m_length] = T.init; |
| 54 | + } |
| 55 | + } else { |
| 56 | + auto new_table = () @trusted { return m_table.createNew(allocationCount(count)); } (); |
| 57 | + new_table[0 .. m_length] = m_table[0 .. m_length]; |
| 58 | + swap(m_table, new_table); |
| 59 | + } |
| 60 | + |
| 61 | + assert(count <= m_table.length, "Resized table not large enough for requested length!?"); |
| 62 | + m_length = count; |
| 63 | + } |
| 64 | + |
| 65 | + /// Appends elements to the end of the vector |
| 66 | + void insertBack(T element) |
| 67 | + { |
| 68 | + makeUnique(); |
| 69 | + auto idx = m_length; |
| 70 | + length = idx + 1; |
| 71 | + swap(m_table[idx], element); |
| 72 | + } |
| 73 | + /// ditto |
| 74 | + void insertBack(T[] elements) |
| 75 | + { |
| 76 | + if (elements.length == 0) return; |
| 77 | + |
| 78 | + makeUnique(); |
| 79 | + auto idx = m_length; |
| 80 | + length = idx + elements.length; |
| 81 | + foreach (i, ref el; elements) |
| 82 | + m_table[idx + i] = el; |
| 83 | + } |
| 84 | + /// ditto |
| 85 | + void opOpAssign(string op = "~")(T element) { insertBack(element); } |
| 86 | + /// ditto |
| 87 | + void opOpAssign(string op = "~")(T[] elements) { insertBack(elements); } |
| 88 | + |
| 89 | + static if (is(typeof((const T x) { T y; y = x; }))) { |
| 90 | + /// ditto |
| 91 | + void insertBack(const(T)[] elements) { |
| 92 | + if (elements.length == 0) return; |
| 93 | + |
| 94 | + makeUnique(); |
| 95 | + auto idx = m_length; |
| 96 | + length = idx + elements.length; |
| 97 | + foreach (i, ref el; elements) |
| 98 | + m_table[idx + i] = el; |
| 99 | + } |
| 100 | + /// ditto |
| 101 | + void opOpAssign(string op = "~")(const(T)[] elements) { insertBack(elements); } |
| 102 | + } |
| 103 | + |
| 104 | + /// Removes the last element of the vector |
| 105 | + void removeBack() |
| 106 | + { |
| 107 | + assert(length >= 1, "Attempt to remove element from empty vector"); |
| 108 | + length = length - 1; |
| 109 | + } |
| 110 | + |
| 111 | + /** Accesses the element at the given index. |
| 112 | +
|
| 113 | + Note that accessing an alement of a non-const vector will trigger the |
| 114 | + copy-on-write logic and may allocate, whereas accessing an element of |
| 115 | + a `const` vector will not. |
| 116 | + */ |
| 117 | + ref const(T) opIndex(size_t index) const return { return m_table[index]; } |
| 118 | + /// ditto |
| 119 | + ref T opIndex(size_t index) return { makeUnique(); return m_table[index]; } |
| 120 | + |
| 121 | + /** Accesses a slice of elements. |
| 122 | +
|
| 123 | + Note that accessing an alement of a non-const vector will trigger the |
| 124 | + copy-on-write logic and may allocate, whereas accessing an element of |
| 125 | + a `const` vector will not. |
| 126 | + */ |
| 127 | + const(T)[] opSlice(size_t from, size_t to) const return { return m_table[from .. to]; } |
| 128 | + /// ditto |
| 129 | + T[] opSlice(size_t from, size_t to) return { makeUnique(); return m_table[from .. to]; } |
| 130 | + |
| 131 | + /** Returns a slice of all elements of the vector. |
| 132 | +
|
| 133 | + Note that accessing an alement of a non-const vector will trigger the |
| 134 | + copy-on-write logic and may allocate, whereas accessing an element of |
| 135 | + a `const` vector will not. |
| 136 | + */ |
| 137 | + const(T)[] opSlice() const return { return m_table[0 .. length]; } |
| 138 | + /// ditto |
| 139 | + T[] opSlice() return { makeUnique(); return m_table[0 .. length]; } |
| 140 | + |
| 141 | + static size_t allocationCount(size_t count) |
| 142 | + { |
| 143 | + return nextPOT(max(count, 16, 1024/T.sizeof)); |
| 144 | + } |
| 145 | + |
| 146 | + private void makeUnique() |
| 147 | + @trusted { |
| 148 | + if (!m_table.isUnique()) |
| 149 | + m_table = m_table.dup; |
| 150 | + } |
| 151 | +} |
| 152 | + |
| 153 | + |
| 154 | +@safe nothrow unittest { |
| 155 | + Vector!int v; |
| 156 | + assert(v.length == 0); |
| 157 | + v.length = 1; |
| 158 | + assert(v.length == 1); |
| 159 | + assert(v[0] == 0); |
| 160 | + v[0] = 2; |
| 161 | + assert(v[0] == 2); |
| 162 | + v ~= 3; |
| 163 | + assert(v.length == 2); |
| 164 | + assert(v[1] == 3); |
| 165 | + |
| 166 | + const w = v; |
| 167 | + assert(w.length == 2); |
| 168 | + assert(w[] == [2, 3]); |
| 169 | + assert(w[].ptr is (cast(const)v)[].ptr); |
| 170 | + |
| 171 | + v.length = 3; |
| 172 | + assert(v.length == 3); |
| 173 | + assert(w.length == 2); |
| 174 | + assert(w[].ptr is (cast(const)v)[].ptr); |
| 175 | + |
| 176 | + v[0] = 2; |
| 177 | + assert(w[].ptr !is (cast(const)v)[].ptr); |
| 178 | + assert(w[0] == 2); |
| 179 | +} |
| 180 | + |
| 181 | +private size_t nextPOT(size_t n) @safe nothrow @nogc |
| 182 | +{ |
| 183 | + foreach_reverse (i; 0 .. size_t.sizeof*8) { |
| 184 | + size_t ni = cast(size_t)1 << i; |
| 185 | + if (n & ni) { |
| 186 | + return n & (ni-1) ? ni << 1 : ni; |
| 187 | + } |
| 188 | + } |
| 189 | + return 1; |
| 190 | +} |
| 191 | + |
| 192 | +unittest { |
| 193 | + assert(nextPOT(1) == 1); |
| 194 | + assert(nextPOT(2) == 2); |
| 195 | + assert(nextPOT(3) == 4); |
| 196 | + assert(nextPOT(4) == 4); |
| 197 | + assert(nextPOT(5) == 8); |
| 198 | +} |
0 commit comments