- Y2T1
- Instructor: Peerapon Vateekul
- Language: Python
Warning
headache intensifies
- 01: intro - what is data science?
- 02: no class (mother's day)
- 03: data preparation, basic pandas
- 04: data preparation (narrowing down columns, impute missing values)
- 05: data preparation (handling outliers, data transformation, train-test data, stratify, random_state, dummy coding)
- 06: types of ML, DecisionTreeClassifier, DecisionTreeRegressor
- 07: pruning, RandomForestClassifier, RandomForestRegressor, bootstrapping, boosting, evaluation measure (classification_report, metrics)
- 08: midterm exam
- 09: kNN, GridSearchCV, RandomGridSearchCV, LinearRegression, LogisticRegression
- 10: neural network, MLPClassifier, MLPRegressor, K-means clustering, KMeans, StandardScaler, DBSCAN, association rule mining
- 11: web scraping - BeautifulSoup, Selenium, REST API, FastAPI
- 12: make up midterm exam
- 13: BI dashboard, AWS QuickSight
- 14: data storage - SQL, MongoDB
- 15: streamlit
- 16: advanced AI/ML topics