Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Small simplifier improvements #863

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions src/main/scala/viper/silver/ast/utility/Expressions.scala
Original file line number Diff line number Diff line change
Expand Up @@ -200,6 +200,23 @@ object Expressions {
case _ => false
}

def isKnownWellDefined(e: Exp, program: Option[Program]): Boolean = {
e match {
case FieldAccessPredicate(FieldAccess(rcv, _), prm) =>
// Extra case for field access predicates because the contained field access does NOT require already having the field permission.
isKnownWellDefined(rcv, program) && (prm.isEmpty || isKnownWellDefined(prm.get, program))
case _: FieldAccess | _: Unfolding | _: Applying | _: Asserting => false
case _: SeqIndex | _: MapLookup => false
case _: Div | _: Mod => false
case f: FuncApp =>
program match {
case Some(p) => p.findFunction(f.funcname).pres.isEmpty && f.args.forall(isKnownWellDefined(_, program))
case None => false // conservative
}
case other => other.subExps.forall(isKnownWellDefined(_, program))
}
}

// note: dependency on program for looking up function preconditions
def proofObligations(e: Exp): (Program => Seq[Exp]) = (prog: Program) => {
e.reduceTree[Seq[Exp]] {
Expand Down
67 changes: 54 additions & 13 deletions src/main/scala/viper/silver/ast/utility/Simplifier.scala
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,10 @@ object Simplifier {
*/
def simplify[N <: Node](n: N, assumeWelldefinedness: Boolean = false): N = {

def isKnownWellDefined(e: Exp): Boolean = {
assumeWelldefinedness || Expressions.isKnownWellDefined(e, None)
}

val simplifySingle: PartialFunction[Node, Node] = {
// expression simplifications
case root: Exp if root.simplified.isDefined =>
Expand All @@ -43,19 +47,26 @@ object Simplifier {
case root@And(FalseLit(), _) => FalseLit()(root.pos, root.info)
case root@And(_, FalseLit()) => FalseLit()(root.pos, root.info)

case And(p1@FieldAccessPredicate(loc1, Some(perm1)), FieldAccessPredicate(loc2, Some(perm2))) if loc1 == loc2 =>
FieldAccessPredicate(loc1, Some(PermAdd(perm1, perm2)(perm1.pos, perm1.info)))(p1.pos, p1.info)

case Or(FalseLit(), right) => right
case Or(left, FalseLit()) => left
case root@Or(TrueLit(), _) => TrueLit()(root.pos, root.info)
case root@Or(_, TrueLit()) => TrueLit()(root.pos, root.info)

case root@Implies(FalseLit(), _) => TrueLit()(root.pos, root.info)
case Implies(_, tl@TrueLit()) if assumeWelldefinedness => tl
case Implies(l1, tl@TrueLit()) if isKnownWellDefined(l1) => tl
case Implies(TrueLit(), consequent) => consequent
case root@Implies(FalseLit(), _) => TrueLit()(root.pos, root.info)
case root@Implies(l1, Implies(l2, r)) => Implies(And(l1, l2)(), r)(root.pos, root.info)
case root@Implies(l1, i2@Implies(l2, r)) =>
if (l1 == l2)
i2
else
Implies(And(l1, l2)(), r)(root.pos, root.info)

// TODO: Consider checking if Expressions.proofObligations(left) is empty (requires adding the program as parameter).
case root@EqCmp(left, right) if assumeWelldefinedness && left == right => TrueLit()(root.pos, root.info)
case root@EqCmp(left, right) if left == right && isKnownWellDefined(left) => TrueLit()(root.pos, root.info)
case root@EqCmp(BoolLit(left), BoolLit(right)) =>
BoolLit(left == right)(root.pos, root.info)
case root@EqCmp(FalseLit(), right) => Not(right)(root.pos, root.info)
Expand All @@ -76,11 +87,11 @@ object Simplifier {
BoolLit(left != right)(root.pos, root.info)
case root@NeCmp(NullLit(), NullLit()) =>
FalseLit()(root.pos, root.info)
case root@NeCmp(left, right) if assumeWelldefinedness && left == right => FalseLit()(root.pos, root.info)
case root@NeCmp(left, right) if left == right && isKnownWellDefined(left) => FalseLit()(root.pos, root.info)

case CondExp(TrueLit(), ifTrue, _) => ifTrue
case CondExp(FalseLit(), _, ifFalse) => ifFalse
case CondExp(_, ifTrue, ifFalse) if assumeWelldefinedness && ifTrue == ifFalse =>
case CondExp(condition, ifTrue, ifFalse) if ifTrue == ifFalse && isKnownWellDefined(condition) && isKnownWellDefined(ifTrue) =>
ifTrue
case root@CondExp(condition, FalseLit(), TrueLit()) =>
Not(condition)(root.pos, root.info)
Expand All @@ -98,6 +109,36 @@ object Simplifier {
case root@CondExp(condition, ifTrue, TrueLit()) =>
Implies(condition, ifTrue)(root.pos, root.info)

case root@CondExp(c1, CondExp(c2, a, _), c) if c1 == c2 =>
if (a == c && isKnownWellDefined(c1))
a
else
CondExp(c1, a, c)(root.pos, root.info)

case root@CondExp(c1, a, CondExp(c2, _, c)) if c1 == c2 =>
if (a == c && isKnownWellDefined(c1))
a
else
CondExp(c1, a, c)(root.pos, root.info)

case root@CondExp(c1, CondExp(c2, a, b), c) if a == c =>
CondExp(And(c1, Not(c2)(c2.pos, c2.info))(c1.pos, c1.info), b, a)(root.pos, root.info)

case root@CondExp(c1, CondExp(c2, a, b), c) if b == c =>
CondExp(And(c1, c2)(c1.pos, c1.info), a, b)(root.pos, root.info)

case root@CondExp(c1, a, CondExp(c2, b, c)) if a == b =>
CondExp(Or(c1, c2)(c1.pos, c1.info), a, c)(root.pos, root.info)

case root@CondExp(c1, a, CondExp(c2, b, c)) if a == c =>
CondExp(Or(c1, Not(c2)(c2.pos, c2.info))(c1.pos, c1.info), a, b)(root.pos, root.info)

case root@CondExp(c1, a, Implies(c2, b)) if a == b =>
Implies(Or(c1, c2)(c1.pos, c1.info), a)(root.pos, root.info)

case root@CondExp(c1, Implies(c2, a), b) if a == b =>
Implies(Or(Not(c1)(c1.pos, c1.info), c2)(c1.pos, c1.info), a)(root.pos, root.info)

case root@Forall(_, _, BoolLit(literal)) =>
BoolLit(literal)(root.pos, root.info)
case root@Exists(_, _, BoolLit(literal)) =>
Expand All @@ -112,16 +153,16 @@ object Simplifier {
case root@PermMul(AnyPermLiteral(a, b), AnyPermLiteral(c, d)) =>
val product = Rational(a, b) * Rational(c, d)
FractionalPerm(IntLit(product.numerator)(root.pos, root.info), IntLit(product.denominator)(root.pos, root.info))(root.pos, root.info)
case PermMul(_, np@NoPerm()) if assumeWelldefinedness => np
case PermMul(np@NoPerm(), _) if assumeWelldefinedness => np
case PermMul(p, np@NoPerm()) if isKnownWellDefined(p) => np
case PermMul(np@NoPerm(), p) if isKnownWellDefined(p) => np

case PermMul(wc@WildcardPerm(), _) if assumeWelldefinedness => wc
case PermMul(_, wc@WildcardPerm()) if assumeWelldefinedness => wc
case PermMul(wc@WildcardPerm(), p) if isKnownWellDefined(p) => wc
case PermMul(p, wc@WildcardPerm()) if isKnownWellDefined(p) => wc

case root@PermGeCmp(a, b) if assumeWelldefinedness && a == b => TrueLit()(root.pos, root.info)
case root@PermLeCmp(a, b) if assumeWelldefinedness && a == b => TrueLit()(root.pos, root.info)
case root@PermGtCmp(a, b) if assumeWelldefinedness && a == b => FalseLit()(root.pos, root.info)
case root@PermLtCmp(a, b) if assumeWelldefinedness && a == b => FalseLit()(root.pos, root.info)
case root@PermGeCmp(a, b) if a == b && isKnownWellDefined(a) => TrueLit()(root.pos, root.info)
case root@PermLeCmp(a, b) if a == b && isKnownWellDefined(a) => TrueLit()(root.pos, root.info)
case root@PermGtCmp(a, b) if a == b && isKnownWellDefined(a) => FalseLit()(root.pos, root.info)
case root@PermLtCmp(a, b) if a == b && isKnownWellDefined(a) => FalseLit()(root.pos, root.info)

case root@PermGtCmp(AnyPermLiteral(a, b), AnyPermLiteral(c, d)) =>
BoolLit(Rational(a, b) > Rational(c, d))(root.pos, root.info)
Expand Down