Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions examples/run3_ions/006_radial_bb_sep.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Example of plotting radial BB separation
import matplotlib.pyplot as plt
import xtrack as xt
import numpy as np
import pandas as pd


collider = xt.Multiline.from_json('./collider_04_tuned_and_leveled_bb_on.json')
collider.build_trackers()

df_bb = {}

for beam in [1, 2]:
bb_names = []
bb_idx = []

for counter, i in enumerate(collider[f"lhcb{beam}"].element_names):
if "bb_" in i:
bb_names.append(i)
bb_idx.append(counter)

radial_bb_sep = []

for idx in bb_idx:
element = collider[f"lhcb{beam}"].elements[idx]
sep_x = element.other_beam_shift_x
sep_y = element.other_beam_shift_y

try:
sigma_x = np.sqrt(element.other_beam_Sigma_11)
sigma_y = np.sqrt(element.other_beam_Sigma_33)
except:
sigma_x = np.sqrt(element.slices_other_beam_Sigma_11[0])
sigma_y = np.sqrt(element.slices_other_beam_Sigma_33[0])

sep_x /= sigma_x
sep_y /= sigma_y
radial_bb_sep.append(np.sqrt(sep_x**2 + sep_y**2))

df_beam = pd.DataFrame({
"radial_bb_sep": radial_bb_sep,
"name": bb_names
})

twiss = collider[f"lhcb{beam}"].twiss().to_pandas()
df_bb[beam] = pd.merge(df_beam, twiss, on='name')


fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(10,8), sharey=True)
ax = axs.flatten()

twiss_b1 = collider[f"lhcb1"].twiss().to_pandas()
#twiss_b2 = collider[f"lhcb2"].twiss().to_pandas()

for counter, ip in enumerate([1,2,5,8]):

plt.sca(ax[counter])

plt.title(f"IP{ip}")

ip_s = twiss_b1[twiss_b1.name == f"ip{ip}"]["s"].values[0]
plt.axvline(ip_s, c='k', linestyle='--')

df_bb_temp = df_bb[1][df_bb[1]["name"].str.contains(f".l{ip}") | df_bb[1]["name"].str.contains(f".r{ip}")]
plt.plot(df_bb_temp.s, df_bb_temp.radial_bb_sep, marker='o', label='B1', c='b')

#ip_s = twiss_b2[twiss_b2.name == f"ip{ip}"]["s"].values[0]
#df_bb_temp = df_bb[2][df_bb[2]["name"].str.contains(f".l{ip}") | df_bb[2]["name"].str.contains(f".r{ip}")]
#plt.plot(df_bb_temp.s, df_bb_temp.radial_bb_sep, marker='o', label='B2', c='r')

plt.xlabel("s (m)")
plt.ylabel("Radial BB separation (sigma)")
plt.grid()

plt.legend()
fig.tight_layout()
plt.show()