Skip to content

文档(小说、论文、字幕)翻译工具(支持 pdf/word/excel/json/epub/srt...)Document (Novel, Thesis, Subtitle) Translation Tool (Supports pdf/word/excel/json/epub/srt...)

License

Notifications You must be signed in to change notification settings

xunbu/docutranslate

Repository files navigation

Project Logo

DocuTranslate

GitHub stars GitHub Downloads PyPI version Python Version License

简体中文 / English / 日本語 / Tiếng Việt

A lightweight local file translation tool based on Large Language Models.

  • Support Multiple Formats: Translates pdf, docx, xlsx, md, txt, json, epub, srt, ass, and more.
  • Auto-Generate Glossary: Supports automatic glossary generation to ensure term alignment.
  • PDF Table, Formula, Code Recognition: Leverages docling and mineru PDF parsing engines to recognize and translate tables, formulas, and code often found in academic papers.
  • JSON Translation: Supports specifying values to translate within JSON using paths (jsonpath-ng syntax).
  • Word/Excel Format Preservation: Supports docx and xlsx files (currently does not support doc or xls) while maintaining original formatting.
  • Multi-AI Platform Support: Supports most AI platforms, allowing for high-performance concurrent AI translation with custom prompts.
  • Async Support: Designed for high-performance scenarios, providing full asynchronous support and interfaces for parallel multi-tasking.
  • LAN & Multi-user Support: Supports simultaneous use by multiple users within a local area network (LAN).
  • Interactive Web Interface: Provides an out-of-the-box Web UI and RESTful API for easy integration and usage.
  • Compact, Portable Packages: Windows and Mac portable packages under 40MB (versions that do not use docling for local PDF parsing).

When translating pdf, it is first converted to markdown. This will lose the original layout. Users with strict layout requirements should take note.

QQ Community Group: 1047781902

UI Interface: UI Interface

Paper Translation: Paper Translation

Novel Translation: Novel Translation

Integration Packages

For users who want to get started quickly, we provide integration packages on GitHub Releases. Simply download, unzip, and enter your AI platform API-Key to start using it.

  • DocuTranslate: Standard version. Uses minerU (online or locally deployed) for PDF parsing. Supports local minerU API calls. (Recommended)
  • DocuTranslate_full: Full version. Includes the built-in docling local PDF parsing engine. Choose this version if you need offline PDF parsing without minerU.

Installation

Using pip

# Basic installation
pip install docutranslate

# If you need to use docling for local PDF parsing
pip install docutranslate[docling]

Using uv

# Initialize environment
uv init

# Basic installation
uv add docutranslate

# Install docling extension
uv add docutranslate[docling]

Using git

# Initialize environment
git clone https://github.com/xunbu/docutranslate.git

cd docutranslate

uv sync

Using docker

docker run -d -p 8010:8010 xunbu/docutranslate:latest
# docker run -it -p 8010:8010 xunbu/docutranslate:latest
# docker run -it -p 8010:8010 xunbu/docutranslate:v1.5.4

Core Concept: Workflow

DocuTranslate uses a Workflow system - each workflow is a complete translation pipeline for a specific file type.

Basic flow:

  1. Select workflow based on file type
  2. Configure the workflow (LLM, parsing engine, output format)
  3. Execute translation
  4. Save results

Start Web UI and API Service

For ease of use, DocuTranslate provides a fully functional Web Interface and RESTful API.

Start the Service:

# Start service, defaults to listening on port 8010
docutranslate -i

# Start on a specific port
docutranslate -i -p 8011

# Allow CORS requests
docutranslate -i --cors


# You can also specify the port via environment variable
export DOCUTRANSLATE_PORT=8011
docutranslate -i
  • Interactive Interface: After starting the service, please visit http://127.0.0.1:8010 (or your specified port) in your browser.
  • API Documentation: Full API documentation (Swagger UI) is located at http://127.0.0.1:8010/docs.

Usage Examples

Using the Simple Client SDK (Recommended)

The easiest way to get started is using the Client class, which provides a simple and intuitive API for translation:

from docutranslate.sdk import Client

# Initialize the client with your AI platform settings
client = Client(
    api_key="YOUR_OPENAI_API_KEY",  # or any other AI platform API key
    base_url="https://api.openai.com/v1/",
    model_id="gpt-4o",
    to_lang="Chinese",
    concurrent=10,  # Number of concurrent requests
)

# Example 1: Translate plain text files (no PDF parsing engine needed)
result = client.translate("path/to/your/document.txt")
print(f"Translation complete! Saved to: {result.save()}")

# Example 2: Translate PDF files (requires mineru_token or local deployment)
# Option A: Use online MinerU (token required: https://mineru.net/apiManage/token)
result = client.translate(
    "path/to/your/document.pdf",
    convert_engine="mineru",
    mineru_token="YOUR_MINERU_TOKEN",  # Replace with your MinerU Token
    formula_ocr=True,  # Enable formula recognition
)
result.save(fmt="html")

# Option B: Use locally deployed MinerU (recommended for intranet/offline)
# First start local MinerU service, reference: https://github.com/opendatalab/MinerU
result = client.translate(
    "path/to/your/document.pdf",
    convert_engine="mineru_deploy",
    mineru_deploy_base_url="http://127.0.0.1:8000",  # Your local MinerU address
    mineru_deploy_backend="hybrid-auto-engine",  # Backend type
)
result.save(fmt="markdown")

# Example 3: Translate Docx files (preserve formatting)
result = client.translate(
    "path/to/your/document.docx",
    insert_mode="replace",  # replace/append/prepend
)
result.save(fmt="docx")  # Save as docx format

# Example 4: Export as base64 encoded string (for API transmission)
base64_content = result.export(fmt="html")
print(f"Exported content length: {len(base64_content)}")

# You can also access the underlying workflow for advanced operations
# workflow = result.workflow

Client Features:

  • Auto-detection: Automatically detects file type and selects the appropriate workflow
  • Flexible Configuration: Override any default settings per translation call
  • Multiple Output Options: Save to disk or export as Base64 string
  • Async Support: Use translate_async() for concurrent translation tasks

Client SDK Parameters

Parameter Type Default Description
api_key str - AI platform API key
base_url str - AI platform base URL (e.g., https://api.openai.com/v1/)
model_id str - Model ID to use for translation
to_lang str - Target language (e.g., "Chinese", "English", "Japanese")
concurrent int 10 Number of concurrent LLM requests
convert_engine str "mineru" PDF parsing engine: "mineru", "docling", "mineru_deploy"
mineru_deploy_base_url str - Local minerU API address (when convert_engine="mineru_deploy")
mineru_deploy_parse_method str "auto" Local minerU parsing method: "auto", "txt", "ocr"
mineru_deploy_table_enable bool True Enable table recognition for local minerU
mineru_token str - minerU API token (when using online minerU)
skip_translate bool False Skip translation, only parse document
output_dir str "./output" Default output directory for save()
chunk_size int 3000 Text chunk size for LLM processing
temperature float 0.3 LLM temperature parameter
timeout int 60 Request timeout in seconds
retry int 3 Number of retry attempts on failure
provider str "auto" AI provider type (auto, openai, azure, etc.)
force_json bool False Force JSON output mode
rpm int - Requests per minute limit
tpm int - Tokens per minute limit

Result Methods

Method Parameters Description
save() output_dir, name, fmt Save translation result to disk
export() fmt Export as Base64 encoded string
supported_formats - Get list of supported output formats
workflow - Access underlying workflow object
import asyncio
from docutranslate.sdk import Client

async def translate_multiple():
    client = Client(
        api_key="YOUR_API_KEY",
        base_url="https://api.openai.com/v1/",
        model_id="gpt-4o",
        to_lang="Chinese",
    )

    # Translate multiple files concurrently
    files = ["doc1.pdf", "doc2.docx", "notes.txt"]
    results = await asyncio.gather(
        *[client.translate_async(f) for f in files]
    )

    for r in results:
        print(f"Saved: {r.save()}")

asyncio.run(translate_multiple())

Using Workflow API (For Advanced Control)

For more control, use the Workflow API directly. Each workflow follows the same pattern:

# Pattern:
# 1. Create TranslatorConfig (LLM settings)
# 2. Create WorkflowConfig (workflow settings)
# 3. Create Workflow instance
# 4. workflow.read_path(file)
# 5. await workflow.translate_async()
# 6. workflow.save_as_*(name=...) or export_to_*(...)

Available Workflows and Output Methods

Workflow Inputs save_as_* export_to_* Key Config Options
MarkdownBasedWorkflow .pdf, .docx, .md, .png, .jpg html, markdown, markdown_zip html, markdown, markdown_zip convert_engine, translator_config
TXTWorkflow .txt txt, html txt, html translator_config
JsonWorkflow .json json, html json, html translator_config, json_paths
DocxWorkflow .docx docx, html docx, html translator_config, insert_mode
XlsxWorkflow .xlsx, .csv xlsx, html xlsx, html translator_config, insert_mode
SrtWorkflow .srt srt, html srt, html translator_config
EpubWorkflow .epub epub, html epub, html translator_config, insert_mode
HtmlWorkflow .html, .htm html html translator_config, insert_mode
AssWorkflow .ass ass, html ass, html translator_config

Key Configuration Options

Common TranslatorConfig Options:

Option Type Default Description
base_url str - AI platform base URL
api_key str - AI platform API key
model_id str - Model ID
to_lang str - Target language
chunk_size int 3000 Text chunk size
concurrent int 10 Concurrent requests
temperature float 0.3 LLM temperature
timeout int 60 Request timeout (seconds)
retry int 3 Retry attempts

Format-Specific Options:

Option Applicable Workflows Description
insert_mode Docx, Xlsx, Html, Epub "replace" (default), "append", "prepend"
json_paths Json JSONPath expressions (e.g., ["$.*", "$.name"])
separator Docx, Xlsx, Html, Epub Text separator for append/prepend modes
convert_engine MarkdownBased "mineru" (default), "docling", "mineru_deploy"

Example 1: Translate a PDF File (Using MarkdownBasedWorkflow)

This is the most common use case. We will use the minerU engine to convert the PDF to Markdown, and then translate it using an LLM. This example uses asynchronous execution.

import asyncio
from docutranslate.workflow.md_based_workflow import MarkdownBasedWorkflow, MarkdownBasedWorkflowConfig
from docutranslate.converter.x2md.converter_mineru import ConverterMineruConfig
from docutranslate.translator.ai_translator.md_translator import MDTranslatorConfig
from docutranslate.exporter.md.md2html_exporter import MD2HTMLExporterConfig


async def main():
    # 1. Build Translator Configuration
    translator_config = MDTranslatorConfig(
        base_url="https://open.bigmodel.cn/api/paas/v4",  # AI Platform Base URL
        api_key="YOUR_ZHIPU_API_KEY",  # AI Platform API Key
        model_id="glm-4-air",  # Model ID
        to_lang="English",  # Target Language
        chunk_size=3000,  # Text chunk size
        concurrent=10,  # Concurrency level
        # glossary_generate_enable=True, # Enable auto-glossary generation
        # glossary_dict={"Jobs":"Steve Jobs"}, # Pass in a glossary dictionary
        # system_proxy_enable=True, # Enable system proxy
    )

    # 2. Build Converter Configuration (Using minerU)
    converter_config = ConverterMineruConfig(
        mineru_token="YOUR_MINERU_TOKEN",  # Your minerU Token
        formula_ocr=True  # Enable formula recognition
    )

    # 3. Build Main Workflow Configuration
    workflow_config = MarkdownBasedWorkflowConfig(
        convert_engine="mineru",  # Specify parsing engine
        converter_config=converter_config,  # Pass converter config
        translator_config=translator_config,  # Pass translator config
        html_exporter_config=MD2HTMLExporterConfig(cdn=True)  # HTML export config
    )

    # 4. Instantiate Workflow
    workflow = MarkdownBasedWorkflow(config=workflow_config)

    # 5. Read file and execute translation
    print("Starting to read and translate file...")
    workflow.read_path("path/to/your/document.pdf")
    await workflow.translate_async()
    # Or use synchronous method
    # workflow.translate()
    print("Translation complete!")

    # 6. Save results
    workflow.save_as_html(name="translated_document.html")
    workflow.save_as_markdown_zip(name="translated_document.zip")
    workflow.save_as_markdown(name="translated_document.md")  # Markdown with embedded images
    print("Files saved to ./output folder.")

    # Or get content strings directly
    html_content = workflow.export_to_html()
    html_content = workflow.export_to_markdown()
    # print(html_content)


if __name__ == "__main__":
    asyncio.run(main())

Other Workflows

All workflows follow the same pattern. Import the corresponding config and workflow, then configure:

# TXT: from docutranslate.workflow.txt_workflow import TXTWorkflow, TXTWorkflowConfig
# JSON: from docutranslate.workflow.json_workflow import JsonWorkflow, JsonWorkflowConfig
# DOCX: from docutranslate.workflow.docx_workflow import DocxWorkflow, DocxWorkflowConfig
# XLSX: from docutranslate.workflow.xlsx_workflow import XlsxWorkflow, XlsxWorkflowConfig
# EPUB: from docutranslate.workflow.epub_workflow import EpubWorkflow, EpubWorkflowConfig
# HTML: from docutranslate.workflow.html_workflow import HtmlWorkflow, HtmlWorkflowConfig
# SRT:  from docutranslate.workflow.srt_workflow import SrtWorkflow, SrtWorkflowConfig
# ASS:   from docutranslate.workflow.ass_workflow import AssWorkflow, AssWorkflowConfig

Key config options:

  • insert_mode: "replace", "append", or "prepend" (for docx/xlsx/html/epub)
  • json_paths: JSONPath expressions for JSON translation (e.g., ["$.*", "$.name"])
  • separator: Text separator for "append" / "prepend" modes

Prerequisites and Detailed Configuration

1. Get Large Model API Key

Translation functionality relies on Large Language Models. You need to obtain a base_url, api_key, and model_id from the corresponding AI platform.

Recommended Models: Volcengine's doubao-seed-1-6-flash, doubao-seed-1-6 series, Zhipu's glm-4-flash, Alibaba Cloud's qwen-plus, qwen-flash, Deepseek's deepseek-chat, etc.

302.AI 👈 Register via this link to get $1 free credit.

Platform Name Get API Key Base URL
ollama http://127.0.0.1:11434/v1
lm studio http://127.0.0.1:1234/v1
302.AI Click to Get https://api.302.ai/v1
openrouter Click to Get https://openrouter.ai/api/v1
openai Click to Get https://api.openai.com/v1/
gemini Click to Get https://generativelanguage.googleapis.com/v1beta/openai/
deepseek Click to Get https://api.deepseek.com/v1
Zhipu AI Click to Get https://open.bigmodel.cn/api/paas/v4
Tencent Hunyuan Click to Get https://api.hunyuan.cloud.tencent.com/v1
Alibaba Bailian Click to Get https://dashscope.aliyuncs.com/compatible-mode/v1
Volcengine Click to Get https://ark.cn-beijing.volces.com/api/v3
SiliconFlow Click to Get https://api.siliconflow.cn/v1
DMXAPI Click to Get https://www.dmxapi.cn/v1
Juguang AI Click to Get https://ai.juguang.chat/v1

2. PDF Parsing Engine (Skip if you don't need to translate PDFs)

2.1 Get minerU Token (Online PDF Parsing, Free, Recommended)

If you choose mineru as the document parsing engine (convert_engine="mineru"), you need to apply for a free Token.

  1. Visit minerU Website to register and apply for the API.
  2. Create a new API Token in the API Token Management Interface.

Note: The minerU Token is valid for 14 days. Please recreate it after expiration.

2.2. docling Engine Configuration (Local PDF Parsing)

If you choose docling as the document parsing engine (convert_engine="docling"), it will download the required models from Hugging Face upon first use.

A better option is to download docling_artifact.zip from GitHub Releases and unzip it into your working directory.

Solutions for docling Model Download Network Issues:

  1. Set Hugging Face Mirror (Recommended):
  • Method A (Environment Variable): Set the system environment variable HF_ENDPOINT and restart your IDE or terminal.
    HF_ENDPOINT=https://hf-mirror.com
    
  • Method B (In Code): Add the following code at the beginning of your Python script.
import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
  1. Offline Use (Pre-download Model Package):
  • Download docling_artifact.zip from GitHub Releases.
  • Unzip it into your project directory.
  • Specify the model path in the configuration (if the model is not in the same directory as the script):
from docutranslate.converter.x2md.converter_docling import ConverterDoclingConfig

converter_config = ConverterDoclingConfig(
    artifact="./docling_artifact",  # Point to the unzipped folder
    code_ocr=True,
    formula_ocr=True
)

2.3. Locally Deployed MinerU Service

For offline/intranet environments, deploy minerU locally with API enabled. Set mineru_deploy_base_url to your minerU API endpoint.

Client SDK:

from docutranslate.sdk import Client

client = Client(
    api_key="YOUR_LLM_API_KEY",
    model_id="llama3",
    to_lang="Chinese",
    convert_engine="mineru_deploy",
    mineru_deploy_base_url="http://127.0.0.1:8000",  # Your minerU API address
)
result = client.translate("document.pdf")
result.save(fmt="markdown")

FAQ

Q: Output is in original language? A: Check logs for errors. Usually due to exhausted API credits or network issues.

Q: Port 8010 occupied? A: Use docutranslate -i -p 8011 or set DOCUTRANSLATE_PORT=8011.

Q: Scanned PDFs supported? A: Yes, use mineru engine with OCR capabilities.

Q: First PDF translation slow? A: docling needs to download models on first run. Use Hugging Face mirror or pre-download artifact.

Q: Use in intranet/offline? A: Yes. Use local LLM (Ollama/LM Studio) and local minerU or docling.

Q: PDF cache mechanism? A: MarkdownBasedWorkflow caches parsing results in memory (last 10 parses). Configure via DOCUTRANSLATE_CACHE_NUM.

Q: Enable proxy? A: Set system_proxy_enable=True in TranslatorConfig.

Star History

Star History Chart

Donation Support

Welcome to support the author. Please specify the reason for the donation in the comments!

Donation Code

About

文档(小说、论文、字幕)翻译工具(支持 pdf/word/excel/json/epub/srt...)Document (Novel, Thesis, Subtitle) Translation Tool (Supports pdf/word/excel/json/epub/srt...)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published