Skip to content

xwshen51/DistributionalPrincipalAutoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Distributional Principal Autoencoder

Distributional Principal Autoencoder (DPA) is a nonlinear dimension reduction method proposed in the paper "Distributional Principal Autoencoders" by Xinwei Shen and Nicolai Meinshausen. This directory contains the Python implementation of DPA.

Installation

The latest release of the Python package can be installed through pip:

pip install DistributionalPrincipalAutoencoder

The development version can be installed from github:

pip install -e "git+https://github.com/xwshen51/DistributionalPrincipalAutoencoder" 

Usage Example

See this tutorial for an example on S-curve.

Contact information

If you meet any problems with the code, please submit an issue or contact Xinwei Shen.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages