Skip to content

yachty66/gpu-benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GPU Benchmark by United Compute

A simple CLI tool to benchmark your GPU's performance with Stable Diffusion and compare results in our global benchmark results.

United Compute Logo

Installation

pip install gpu-benchmark

Usage

Run the benchmark (takes 5 minutes after the pipeline is loaded):

gpu-benchmark

Optional Arguments

If you're running on a cloud provider, specify it with the --provider flag:

gpu-benchmark --provider runpod

You can specify the model to use for the benchmark with the --model flag. By default, the Stable Diffusion 1.5 model is used. Example for running a different model:

gpu-benchmark --model qwen3-0-6b

For multi-GPU systems, you can select a specific GPU like this:

  1. Using the --gpu flag:
gpu-benchmark --gpu 1  # Uses GPU index 1

The tool will:

  1. Load a Stable Diffusion pipeline
  2. Generate images for 5 minutes
  3. Count image generations and track GPU temperature
  4. Upload results to the United Compute Benchmark Results

What it measures

  • Benchmark Score: Number of iterations or images generated in 5 minutes (model-dependent)
  • GPU Model: The specific model of your GPU (e.g., NVIDIA GeForce RTX 4090)
  • Max Heat: Maximum GPU temperature reached (°C)
  • Avg Heat: Average GPU temperature during the benchmark (°C)
  • Country: Your location (detected automatically)
  • GPU Power: Power consumption in watts (W)
  • GPU Memory: Total GPU memory in gigabytes (GB)
  • Platform: Operating system information
  • Acceleration: CUDA version
  • PyTorch Version: PyTorch library version

Requirements

  • CUDA-compatible NVIDIA GPU
  • Python 3.8+

Links

About

Benchmark your GPU with ease

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Languages