GPU Benchmark by United Compute
A simple CLI tool to benchmark your GPU's performance with Stable Diffusion and compare results in our global benchmark results.
pip install gpu-benchmark
Run the benchmark (takes 5 minutes after the pipeline is loaded):
gpu-benchmark
If you're running on a cloud provider, specify it with the --provider
flag:
gpu-benchmark --provider runpod
You can specify the model to use for the benchmark with the --model
flag. By default, the Stable Diffusion 1.5 model is used.
Example for running a different model:
gpu-benchmark --model qwen3-0-6b
For multi-GPU systems, you can select a specific GPU like this:
- Using the
--gpu
flag:
gpu-benchmark --gpu 1 # Uses GPU index 1
The tool will:
- Load a Stable Diffusion pipeline
- Generate images for 5 minutes
- Count image generations and track GPU temperature
- Upload results to the United Compute Benchmark Results
- Benchmark Score: Number of iterations or images generated in 5 minutes (model-dependent)
- GPU Model: The specific model of your GPU (e.g., NVIDIA GeForce RTX 4090)
- Max Heat: Maximum GPU temperature reached (°C)
- Avg Heat: Average GPU temperature during the benchmark (°C)
- Country: Your location (detected automatically)
- GPU Power: Power consumption in watts (W)
- GPU Memory: Total GPU memory in gigabytes (GB)
- Platform: Operating system information
- Acceleration: CUDA version
- PyTorch Version: PyTorch library version
- CUDA-compatible NVIDIA GPU
- Python 3.8+