Skip to content

Dynamic conv test #64

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions configs/train-div2k/train_edsr-baseline-liif.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ train_dataset:
dataset:
name: image-folder
args:
root_path: ./load/div2k/DIV2K_train_HR
root_path: /data/home/wanghanying/work/dataset/DIV2K/DIV2K_train_HR
repeat: 20
cache: in_memory
wrapper:
Expand All @@ -18,7 +18,7 @@ val_dataset:
dataset:
name: image-folder
args:
root_path: ./load/div2k/DIV2K_valid_HR
root_path: /data/home/wanghanying/work/dataset/DIV2K/DIV2K_valid_HR
first_k: 10
repeat: 160
cache: in_memory
Expand Down Expand Up @@ -58,3 +58,4 @@ multi_step_lr:

epoch_val: 1
epoch_save: 100
# resume: /data/home/wanghanying/work/liif/save/train_edsr_dytest/epoch-last.pth
342 changes: 342 additions & 0 deletions models/dynamic_conv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,342 @@
#https://github.com/kaijieshi7/Dynamic-convolution-Pytorch/blob/master/dynamic_conv.py

import torch
import torch.nn as nn
import torch.nn.functional as F



class attention1d(nn.Module):
def __init__(self, in_planes, ratios, K, temperature, init_weight=True):
super(attention1d, self).__init__()
assert temperature%3==1
self.avgpool = nn.AdaptiveAvgPool1d(1)
if in_planes!=3:
hidden_planes = int(in_planes*ratios)+1
else:
hidden_planes = K
self.fc1 = nn.Conv1d(in_planes, hidden_planes, 1, bias=False)
# self.bn = nn.BatchNorm2d(hidden_planes)
self.fc2 = nn.Conv1d(hidden_planes, K, 1, bias=True)
self.temperature = temperature
if init_weight:
self._initialize_weights()


def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m ,nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def updata_temperature(self):
if self.temperature!=1:
self.temperature -=3
print('Change temperature to:', str(self.temperature))


def forward(self, x):
x = self.avgpool(x)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x).view(x.size(0), -1)
return F.softmax(x/self.temperature, 1)


class Dynamic_conv1d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, ratio=0.25, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4,temperature=34, init_weight=True):
super(Dynamic_conv1d, self).__init__()
assert in_planes%groups==0
self.in_planes = in_planes
self.out_planes = out_planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
self.K = K
self.attention = attention1d(in_planes, ratio, K, temperature)

self.weight = nn.Parameter(torch.randn(K, out_planes, in_planes//groups, kernel_size), requires_grad=True)
if bias:
self.bias = nn.Parameter(torch.zeros(K, out_planes))
else:
self.bias = None
if init_weight:
self._initialize_weights()

#TODO 初始化
def _initialize_weights(self):
for i in range(self.K):
nn.init.kaiming_uniform_(self.weight[i])


def update_temperature(self):
self.attention.updata_temperature()

def forward(self, x):#将batch视作维度变量,进行组卷积,因为组卷积的权重是不同的,动态卷积的权重也是不同的
softmax_attention = self.attention(x)
batch_size, in_planes, height = x.size()
x = x.view(1, -1, height, )# 变化成一个维度进行组卷积
weight = self.weight.view(self.K, -1)

# 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同)
aggregate_weight = torch.mm(softmax_attention, weight).view(batch_size*self.out_planes, self.in_planes//self.groups, self.kernel_size,)
if self.bias is not None:
aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1)
output = F.conv1d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups*batch_size)
else:
output = F.conv1d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * batch_size)

output = output.view(batch_size, self.out_planes, output.size(-1))
return output



class attention2d(nn.Module):
def __init__(self, in_planes, ratios, K, temperature, init_weight=True):
super(attention2d, self).__init__()
assert temperature%3==1
self.avgpool = nn.AdaptiveAvgPool2d(1)
if in_planes!=3:
hidden_planes = int(in_planes*ratios)+1
else:
hidden_planes = K
self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False)
# self.bn = nn.BatchNorm2d(hidden_planes)
self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=True)
self.temperature = temperature
if init_weight:
self._initialize_weights()


def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m ,nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def updata_temperature(self):
if self.temperature!=1:
self.temperature -=3
print('Change temperature to:', str(self.temperature))


def forward(self, x):
x = self.avgpool(x)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x).view(x.size(0), -1)
return F.softmax(x/self.temperature, 1)


class Dynamic_conv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, ratio=0.25, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4,temperature=34, init_weight=True):
super(Dynamic_conv2d, self).__init__()
assert in_planes%groups==0
self.in_planes = in_planes
self.out_planes = out_planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
self.K = K
self.attention = attention2d(in_planes, ratio, K, temperature)

self.weight = nn.Parameter(torch.randn(K, out_planes, in_planes//groups, kernel_size, kernel_size), requires_grad=True)
if bias:
self.bias = nn.Parameter(torch.zeros(K, out_planes))
else:
self.bias = None
if init_weight:
self._initialize_weights()

#TODO 初始化
def _initialize_weights(self):
for i in range(self.K):
nn.init.kaiming_uniform_(self.weight[i])


def update_temperature(self):
self.attention.updata_temperature()

def forward(self, x):#将batch视作维度变量,进行组卷积,因为组卷积的权重是不同的,动态卷积的权重也是不同的
softmax_attention = self.attention(x)
batch_size, in_planes, height, width = x.size()
x = x.view(1, -1, height, width)# 变化成一个维度进行组卷积
weight = self.weight.view(self.K, -1)

# 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同)
aggregate_weight = torch.mm(softmax_attention, weight).view(batch_size*self.out_planes, self.in_planes//self.groups, self.kernel_size, self.kernel_size)
if self.bias is not None:
aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1)
output = F.conv2d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups*batch_size)
else:
output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * batch_size)

output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))
return output


class attention3d(nn.Module):
def __init__(self, in_planes, ratios, K, temperature):
super(attention3d, self).__init__()
assert temperature%3==1
self.avgpool = nn.AdaptiveAvgPool3d(1)
if in_planes != 3:
hidden_planes = int(in_planes * ratios)+1
else:
hidden_planes = K
self.fc1 = nn.Conv3d(in_planes, hidden_planes, 1, bias=False)
self.fc2 = nn.Conv3d(hidden_planes, K, 1, bias=False)
self.temperature = temperature

def updata_temperature(self):
if self.temperature!=1:
self.temperature -=3
print('Change temperature to:', str(self.temperature))

def forward(self, x):
x = self.avgpool(x)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x).view(x.size(0), -1)
return F.softmax(x / self.temperature, 1)

class Dynamic_conv3d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, ratio=0.25, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4, temperature=34):
super(Dynamic_conv3d, self).__init__()
assert in_planes%groups==0
self.in_planes = in_planes
self.out_planes = out_planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
self.K = K
self.attention = attention3d(in_planes, ratio, K, temperature)

self.weight = nn.Parameter(torch.randn(K, out_planes, in_planes//groups, kernel_size, kernel_size, kernel_size), requires_grad=True)
if bias:
self.bias = nn.Parameter(torch.zeros(K, out_planes))
else:
self.bias = None


#TODO 初始化
# nn.init.kaiming_uniform_(self.weight, )

def update_temperature(self):
self.attention.updata_temperature()

def forward(self, x):#将batch视作维度变量,进行组卷积,因为组卷积的权重是不同的,动态卷积的权重也是不同的
softmax_attention = self.attention(x)
batch_size, in_planes, depth, height, width = x.size()
x = x.view(1, -1, depth, height, width)# 变化成一个维度进行组卷积
weight = self.weight.view(self.K, -1)

# 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同)
aggregate_weight = torch.mm(softmax_attention, weight).view(batch_size*self.out_planes, self.in_planes//self.groups, self.kernel_size, self.kernel_size, self.kernel_size)
if self.bias is not None:
aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1)
output = F.conv3d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups*batch_size)
else:
output = F.conv3d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * batch_size)

output = output.view(batch_size, self.out_planes, output.size(-3), output.size(-2), output.size(-1))
return output


def conv3x3(in_planes, out_planes, kernel_size=3, bias=False, stride=1, groups=1, dilation=1):
return Dynamic_conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=bias, dilation=dilation)

# def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
# return Dynamic_conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)

# def conv1x1(in_planes, out_planes, stride=1):
# """1x1 convolution"""
# return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

def conv1x1(in_planes, out_planes, stride=1):
return Dynamic_conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False,)


if __name__ == '__main__':
x = torch.randn(24, 3, 20)
model = Dynamic_conv1d(in_planes=3, out_planes=16, kernel_size=3, ratio=0.25, padding=1,)
x = x.to('cuda:0')
model.to('cuda')
# model.attention.cuda()
# nn.Conv3d()
print(model(x).shape)
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
model.update_temperature()
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)
print(model(x).shape)

Loading