Skip to content

Add patches for memory_efficient_attention and NTK scaling #743

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Jul 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 8 additions & 31 deletions scripts/inference/gradio_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,37 +12,6 @@
import traceback
import gc

import transformers
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__
def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None):
self.dim = dim
self.base = base
old_init(self, dim, max_position_embeddings, base, device)

def adaptive_ntk_forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
dim = self.dim
alpha = seq_len / 1024 - 1
base = self.base * alpha ** (dim / (dim-2))
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim ))

freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
cos_cached = emb.cos()[None, None, :, :]
sin_cached = emb.sin()[None, None, :, :]
return (
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init

# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
Expand Down Expand Up @@ -78,10 +47,18 @@ def adaptive_ntk_forward(self, x, seq_len=None):
'--only_cpu',
action='store_true',
help='Only use CPU for inference')
parser.add_argument(
'--alpha',
type=str,
default="1.0",
help="The scaling factor of NTK method, can be a float or 'auto'. ")
args = parser.parse_args()
if args.only_cpu is True:
args.gpus = ""

from patches import apply_attention_patch, apply_ntk_scaling_patch
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)

# Set CUDA devices if available
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
Expand Down
34 changes: 4 additions & 30 deletions scripts/inference/inference_hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
parser.add_argument('--predictions_file', default='./predictions.json', type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu',action='store_true',help='only use CPU for inference')
parser.add_argument('--alpha',type=str,default="1.0", help="The scaling factor of NTK method, can be a float or 'auto'. ")
parser.add_argument('--load_in_8bit',action='store_true', help="Load the LLM in the 8bit mode")

args = parser.parse_args()
Expand All @@ -20,36 +21,9 @@
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel

import transformers
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__
def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None):
self.dim = dim
self.base = base
old_init(self, dim, max_position_embeddings, base, device)

def adaptive_ntk_forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
dim = self.dim
alpha = seq_len / 1024 - 1
base = self.base * alpha ** (dim / (dim-2))
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim ))

freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
cos_cached = emb.cos()[None, None, :, :]
sin_cached = emb.sin()[None, None, :, :]
return (
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init
from patches import apply_attention_patch, apply_ntk_scaling_patch
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)

generation_config = dict(
temperature=0.2,
Expand Down
199 changes: 199 additions & 0 deletions scripts/inference/patches.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
import torch
from torch import nn
from typing import Optional, Tuple, Union
import transformers
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, rotate_half
import math

try:
from xformers import ops as xops
except ImportError:
xops = None
print(
"Xformers is not installed correctly. If you want to use memory_efficient_attention use the following command to install Xformers\npip install xformers."
)


STORE_KV_BEFORE_ROPE = False
USE_MEM_EFF_ATTENTION = False
ALPHA = 1.0


def apply_rotary_pos_emb_single(q, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
return q_embed


def xformers_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()

query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]

if STORE_KV_BEFORE_ROPE is False:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]

if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)

past_key_value = (key_states, value_states) if use_cache else None
else:
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None

cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)

query_states = apply_rotary_pos_emb_single(query_states, cos, sin, position_ids)
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=cos.device)
position_ids = position_ids.unsqueeze(0).view(-1, kv_seq_len)
key_states = apply_rotary_pos_emb_single(key_states, cos, sin, position_ids)

if xops is not None and USE_MEM_EFF_ATTENTION:
attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_bias = None if (query_states.size(1)==1 and key_states.size(1)>1) else xops.LowerTriangularMask()
attn_output = xops.memory_efficient_attention(
query_states, key_states, value_states, attn_bias=attn_bias, p=0)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)

if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
)

# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)

if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)

attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None

return attn_output, attn_weights, past_key_value


old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__

def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None):
self.dim = dim
self.alpha = ALPHA
if isinstance(ALPHA,(float,int)):
base = base * ALPHA ** (dim / (dim-2))
self.base = base
elif ALPHA=='auto':
self.base = base
else:
raise ValueError(ALPHA)
old_init(self, dim, max_position_embeddings, base, device)
ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("ntk_inv_freq", ntk_inv_freq, persistent=False)

def adaptive_ntk_forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
if isinstance(self.alpha,(float,int)):
self.max_seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device, dtype=self.ntk_inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.ntk_inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
elif self.alpha=='auto':
t = torch.arange(seq_len, device=x.device, dtype=self.ntk_inv_freq.dtype)
dim = self.dim
alpha = (seq_len / 1024 - 1) * 1.1
base = self.base * alpha ** (dim / (dim-2))
ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim ))

freqs = torch.einsum("i,j->ij", t, ntk_inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
cos_cached = emb.cos()[None, None, :, :]
sin_cached = emb.sin()[None, None, :, :]
return (
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
else:
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)


def apply_attention_patch(
use_memory_efficient_attention=False,
store_kv_before_rope=False
):
global USE_MEM_EFF_ATTENTION, STORE_KV_BEFORE_ROPE
if use_memory_efficient_attention is True and xops is not None:
USE_MEM_EFF_ATTENTION = use_memory_efficient_attention
print("USE_MEM_EFF_ATTENTION: ",USE_MEM_EFF_ATTENTION)
STORE_KV_BEFORE_ROPE = store_kv_before_rope
print("STORE_KV_BEFORE_ROPE:", STORE_KV_BEFORE_ROPE)
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward


def apply_ntk_scaling_patch(alpha: Union[float,str]):
global ALPHA
ALPHA = alpha
try:
ALPHA = float(ALPHA)
except ValueError:
if ALPHA!="auto":
raise ValueError(f"Alpha can only be a float or 'auto', but given {ALPHA}")
print(f"Apply NTK scaling with ALPHA={ALPHA}")

transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward
34 changes: 4 additions & 30 deletions scripts/openai_server_demo/openai_api_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--load_in_8bit',action='store_true', help='use 8 bit model')
parser.add_argument('--only_cpu',action='store_true',help='only use CPU for inference')
parser.add_argument('--alpha',type=str,default="1.0", help="The scaling factor of NTK method, can be a float or 'auto'. ")
args = parser.parse_args()
load_in_8bit = args.load_in_8bit
if args.only_cpu is True:
Expand All @@ -21,36 +22,9 @@
from transformers import LlamaForCausalLM, LlamaTokenizer, GenerationConfig
from peft import PeftModel

import transformers
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__
def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None):
self.dim = dim
self.base = base
old_init(self, dim, max_position_embeddings, base, device)

def adaptive_ntk_forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
dim = self.dim
alpha = seq_len / 1024 - 1
base = self.base * alpha ** (dim / (dim-2))
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim ))

freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
cos_cached = emb.cos()[None, None, :, :]
sin_cached = emb.sin()[None, None, :, :]
return (
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init
from patches import apply_attention_patch, apply_ntk_scaling_patch
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)

from openai_api_protocol import (
ChatCompletionRequest,
Expand Down
Loading