Skip to content

Extra metrics: F1@5, F1@10, R-precision #460

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion src/MyMediaLite/Eval/Items.cs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
// Copyright (C) 2015 Zeno Gantner, Dimitris Paraschakis
// Copyright (C) 2011, 2012, 2013 Zeno Gantner
// Copyright (C) 2010 Zeno Gantner, Steffen Rendle
//
Expand Down Expand Up @@ -44,13 +45,16 @@ public static class Items
/// <item><term>recall@10</term><description>recall at 10</description></item>
/// <item><term>NDCG</term><description>normalizad discounted cumulative gain</description></item>
/// <item><term>MRR</term><description>mean reciprocal rank</description></item>
/// <item><term>R_prec</term><description>R-precision</description></item>
/// <item><term>F1@5</term><description>F1-measure at 5</description></item>
/// <item><term>F1@10</term><description>F1-measure at 10</description></item>
/// </list>
/// An item recommender is better than another according to one of those measures its score is higher.
/// </remarks>
static public ICollection<string> Measures
{
get {
string[] measures = { "AUC", "prec@5", "prec@10", "MAP", "recall@5", "recall@10", "NDCG", "MRR" };
string[] measures = { "AUC", "prec@5", "prec@10", "MAP", "recall@5", "recall@10", "NDCG", "MRR", "R_prec", "F1@5", "F1@10" };
return new HashSet<string>(measures);
}
}
Expand Down Expand Up @@ -169,6 +173,7 @@ static public ItemRecommendationEvaluationResults Evaluate(
double map = PrecisionAndRecall.AP(prediction_list, correct_items);
double ndcg = NDCG.Compute(prediction_list, correct_items);
double rr = ReciprocalRank.Compute(prediction_list, correct_items);
double r_prec = PrecisionAndRecall.R_Precision(prediction_list, correct_items);
var positions = new int[] { 5, 10 };
var prec = PrecisionAndRecall.PrecisionAt(prediction_list, correct_items, positions);
var recall = PrecisionAndRecall.RecallAt(prediction_list, correct_items, positions);
Expand All @@ -181,6 +186,7 @@ static public ItemRecommendationEvaluationResults Evaluate(
result["MAP"] += (float) map;
result["NDCG"] += (float) ndcg;
result["MRR"] += (float) rr;
result["R_prec"] += (float) r_prec;
result["prec@5"] += (float) prec[5];
result["prec@10"] += (float) prec[10];
result["recall@5"] += (float) recall[5];
Expand All @@ -199,6 +205,9 @@ static public ItemRecommendationEvaluationResults Evaluate(
}
});

result["F1@5"] = (float)2 * ((result["prec@5"] * result["recall@5"]) / (result["prec@5"] + result["recall@5"]));
result["F1@10"] = (float)2 * ((result["prec@10"] * result["recall@10"]) / (result["prec@10"] + result["recall@10"]));

foreach (string measure in Measures)
result[measure] /= num_users;
result["num_users"] = num_users;
Expand Down
13 changes: 13 additions & 0 deletions src/MyMediaLite/Eval/Measures/PrecisionAndRecall.cs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
// Copyright (C) 2015 Zeno Gantner, Dimitris Paraschakis
// Copyright (C) 2011, 2012 Zeno Gantner
// Copyright (C) 2010 Zeno Gantner, Steffen Rendle
//
Expand Down Expand Up @@ -144,5 +145,17 @@ public static int HitsAt(

return hit_count;
}

/// <summary>
/// Compute R-precision, which is the precision at the level of recall
/// </summary>
/// <param name="ranked_items">a list of ranked item IDs, the highest-ranking item first</param>
/// <param name="correct_items">>a collection of positive/correct item IDs</param>
/// <returns></returns>
public static double R_Precision(IList<int> ranked_items, ICollection<int> correct_items)
{
int testset_size = correct_items.Count;
return (double)HitsAt(ranked_items, correct_items, testset_size) / testset_size;
}
}
}