Skip to content

RSNMF recommender for rating prediction #461

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 24 additions & 5 deletions src/MyMediaLite/DataType/MatrixExtensions.cs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
// Copyright (C) 2015 Zeno Gantner, Dimitris Paraschakis
// Copyright (C) 2011, 2012 Zeno Gantner
// Copyright (C) 2010 Steffen Rendle, Zeno Gantner
//
Expand Down Expand Up @@ -68,6 +69,22 @@ static public void InitNormal(this Matrix<float> matrix, double mean, double std
matrix.data[i] = (float) nd.Sample();
}

// Initializes a float matrix with non-negative random values within a range [0,1]
static public void InitNonNegative(this Matrix<float> matrix)
{
System.Random rand = new System.Random();

for (int i = 0; i < matrix.data.Length; i++)
matrix.data[i] = (float)rand.NextDouble();
}

// Initializes a float matrix with zeros
static public void InitZeros(this Matrix<float> matrix)
{
for (int i = 0; i < matrix.data.Length; i++)
matrix.data[i] = 0;
}

/// <summary>Increments the specified matrix element by a double value</summary>
/// <param name="matrix">the matrix</param>
/// <param name="i">the row</param>
Expand All @@ -86,7 +103,7 @@ static public void Inc(this Matrix<float> matrix1, Matrix<float> matrix2)
if (matrix1.dim1 != matrix2.dim1 || matrix1.dim2 != matrix2.dim2)
throw new ArgumentOutOfRangeException("Matrix sizes do not match.");

for (int i = 0; i < matrix1.data.Length; i++)
for (int i = 0; i < matrix1.data.Length; i++)
matrix1.data[i] += matrix2.data[i];
}

Expand All @@ -104,7 +121,7 @@ static public void Inc(this Matrix<int> matrix, int i, int j)
/// <param name="v">the value to increment with</param>
static public void Inc(this Matrix<float> matrix, float v)
{
for (int i = 0; i < matrix.data.Length; i++)
for (int i = 0; i < matrix.data.Length; i++)
matrix.data[i] += v;
}

Expand Down Expand Up @@ -157,7 +174,7 @@ static public float ColumnAverage(this Matrix<float> matrix, int col)
/// <param name="f">the number to multiply with</param>
static public void Multiply(this Matrix<float> matrix, float f)
{
for (int i = 0; i < matrix.data.Length; i++)
for (int i = 0; i < matrix.data.Length; i++)
matrix.data[i] *= f;
}

Expand All @@ -170,7 +187,7 @@ static public void Multiply(this Matrix<float> matrix, float f)
static public float FrobeniusNorm(this Matrix<float> matrix)
{
double squared_entry_sum = 0;
for (int i = 0; i < matrix.data.Length; i++)
for (int i = 0; i < matrix.data.Length; i++)
squared_entry_sum += Math.Pow(matrix.data[i], 2);
return (float) Math.Sqrt(squared_entry_sum);
}
Expand Down Expand Up @@ -304,11 +321,13 @@ static public int Max(this Matrix<int> m)
return m.data.Max();
}



/// <summary>return the maximum value contained in a matrix</summary>
/// <param name='m'>the matrix</param>
static public float Max(this Matrix<float> m)
{
return m.data.Max();
}
}
}
}
22 changes: 22 additions & 0 deletions src/MyMediaLite/RatingPrediction/MatrixFactorization.cs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
// Copyright (C) 2015 Zeno Gantner, Dimitris Paraschakis
// Copyright (C) 2011, 2012 Zeno Gantner
// Copyright (C) 2010 Zeno Gantner, Steffen Rendle, Christoph Freudenthaler
//
Expand Down Expand Up @@ -101,6 +102,7 @@ protected internal virtual void InitModel()
// init factor matrices
user_factors = new Matrix<float>(MaxUserID + 1, NumFactors);
item_factors = new Matrix<float>(MaxItemID + 1, NumFactors);

user_factors.InitNormal(InitMean, InitStdDev);
item_factors.InitNormal(InitMean, InitStdDev);

Expand All @@ -115,6 +117,26 @@ protected internal virtual void InitModel()
current_learnrate = LearnRate;
}

protected internal virtual void InitModelNonNegative()
{
// init factor matrices
user_factors = new Matrix<float>(MaxUserID + 1, NumFactors);
item_factors = new Matrix<float>(MaxItemID + 1, NumFactors);

user_factors.InitNonNegative();
item_factors.InitNonNegative();

// set factors to zero for users and items without training examples
for (int u = 0; u < ratings.CountByUser.Count; u++)
if (ratings.CountByUser[u] == 0)
user_factors.SetRowToOneValue(u, 0);
for (int i = 0; i < ratings.CountByItem.Count; i++)
if (ratings.CountByItem[i] == 0)
item_factors.SetRowToOneValue(i, 0);

current_learnrate = LearnRate;
}

///
public override void Train()
{
Expand Down
165 changes: 165 additions & 0 deletions src/MyMediaLite/RatingPrediction/RSNMF.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
// Copyright (C) 2015 Dimitris Paraschakis
//
// This file is part of MyMediaLite.
//
// MyMediaLite is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// MyMediaLite is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with MyMediaLite. If not, see <http://www.gnu.org/licenses/>.
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Threading.Tasks;
using MyMediaLite.DataType;
using MyMediaLite.Data;
using System.Linq;

namespace MyMediaLite.RatingPrediction
{
/// <summary>Regularized single-element-based non-negative matrix factorization (RSNMF)</summary>
/// <remarks>
/// <para>
/// Literature:
/// <list type="bullet">
/// <item><description>
/// Luo et al. (2014): "An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems".
/// IEEE Transaction and Industrial Informatics, Vol. 10, No. 2, 2014
/// </description></item>
/// </para>
/// </remarks>
public class RSNMF : MatrixFactorization
{
private Matrix<float> P;
private Matrix<float> Q;

/// <summary>Regularization parameter</summary>
public float Lambda { get { return lambda; } set { lambda = value; } }
float lambda = 0.12f;

public RSNMF() {}

public override void Train()
{
InitModelNonNegative();
P = user_factors;
Q = (Matrix<float>) item_factors.Transpose();

Matrix<float> UserUP = new Matrix<float>(P);
Matrix<float> UserDOWN = new Matrix<float>(P);
Matrix<float> ItemUP = new Matrix<float>(Q);
Matrix<float> ItemDOWN = new Matrix<float>(Q);

for (int iter = 0; iter < NumIter; iter++)
{
UserUP.InitZeros();
UserDOWN.InitZeros();
ItemUP.InitZeros();
ItemDOWN.InitZeros();

Parallel.For(0, Ratings.Count, index =>
{
int u = Ratings.Users[index];
int i = Ratings.Items[index];

float R_ui = Ratings[index];
float R_ui_hat = R_hat(u, i);
for (int k = 0; k < NumFactors; k++)
{
UserUP[u, k] += Q[k, i] * R_ui;
UserDOWN[u, k] += Q[k, i] * R_ui_hat;
ItemUP[k, i] += P[u, k] * R_ui;
ItemDOWN[k, i] += P[u, k] * R_ui_hat;
}
});

foreach (int u in Ratings.Users.Distinct())
{
int I_u = Ratings.ByUser[u].Count;
for (int k = 0; k < NumFactors; k++)
{
UserDOWN[u, k] += I_u * lambda * P[u, k];
P[u, k] *= UserUP[u, k] / (UserDOWN[u, k]);
}
}

foreach (int i in Ratings.Items.Distinct())
{
int U_i = Ratings.ByItem[i].Count;
for (int k = 0; k < NumFactors; k++)
{
ItemDOWN[k, i] += U_i * lambda * Q[k, i];
Q[k, i] *= ItemUP[k, i] / (ItemDOWN[k, i]);
}
}

/*
// Evaluate objective function
float sum_error = 0;

//Parallel.For(0, Ratings.Count, index =>
for (int index = 0; index < Ratings.Count; index++)
{
int u = Ratings.Users[index];
int i = Ratings.Items[index];

float R_ui = Ratings[index];

float R_ui_hat = 0;
float p_2 = 0;
float q_2 = 0;

for (int k = 0; k < NumFactors; k++)
{
R_ui_hat += P[u, k] * Q[k, i];
p_2 += (float)Math.Pow(P[u, k], 2);
q_2 += (float)Math.Pow(Q[k, i], 2);
}
sum_error += (float)Math.Pow((R_ui - R_ui_hat), 2) + lambda * p_2 + lambda * q_2;
}
Console.WriteLine("Iteration {0}:\t{1}", iter, sum_error);
*/

}
user_factors = P;
item_factors = (Matrix<float>) Q.Transpose();
}

private float R_hat(int u, int i)
{
float result = 0;
for (int k = 0; k < NumFactors; k++)
{
result += P[u, k] * Q[k, i];
}
return result;
}

public override float Predict(int user_id, int item_id)
{
return base.Predict(user_id, item_id);
}

///
public override float ComputeObjective()
{
return -1;
}

///
public override string ToString()
{
return string.Format(
CultureInfo.InvariantCulture,
"RSNMF num_factors={0} num_iter={1} lambda={2}",
NumFactors, NumIter, Lambda);
}
}
}