FusAD (Fusion Adaptive Network) is a unified deep learning framework for time series analysis, supporting three major tasks:
- 🔍 Anomaly Detection
- 📊 Classification
- 📈 Forecasting
D. Zhang, B. Li, Z. Zhao, F. Nie, J. Gao, and X. Li, "FusAD: Time-Frequency Fusion with Adaptive Denoising for General Time Series Analysis," ICDE, 2026.
Forecasting and Anomaly Detection datasets are downloaded from TimesNet.
UCR and UEA classification datasets are available at UCR Time Series Classification Archive.
FusAD/
├── FusAD-Anomaly-Detection/ # Anomaly detection task
│ ├── models/
│ │ ├── FusAD.py # Main model
│ │ ├── ASM.py # Adaptive Spectral Module
│ │ └── IFM.py # Interactor-Fusion Module
│ ├── exp/ # Experiment classes
│ ├── data_provider/ # Data loading utilities
│ ├── scripts/ # Training scripts (MSL, SMAP, SMD, PSM, SWAT)
│ ├── utils/ # Utility functions
│ └── run.py # Main entry point
│
├── FusAD-classification/ # Classification task
│ ├── Component/
│ │ ├── ASM.py
│ │ ├── IFM.py
│ │ └── Patch.py
│ ├── Dataload/ # Data loading
│ ├── utils/ # Utilities
│ └── main.py # Main entry point
│
├── FusAD-forecasting/ # Forecasting task
│ ├── Component/
│ │ ├── ASM.py
│ │ └── IFM.py
│ ├── scripts/ # Training scripts (ETT, Weather, Traffic, etc.)
│ ├── data_factory.py # Data factory
│ ├── data_loader.py # Data loader
│ └── FusAD_Forecasting.py # Main entry point
│
└── README.md
pip install torch lightning timm einops pandas numpy scikit-learncd FusAD-Anomaly-Detection
# Train on MSL dataset
bash scripts/MSL.sh
# Or run directly
python run.py \
--task_name anomaly_detection \
--is_training 1 \
--model FusAD \
--data MSL \
--root_path ./data/MSL \
--seq_len 100 \
--d_model 256 \
--e_layers 3 \
--batch_size 128cd FusAD-classification
python main.py \
--model_id YourDataset \
--data_path /path/to/dataset \
--emb_dim 64 \
--depth 3 \
--batch_size 1024 \
--num_epochs 300cd FusAD-forecasting
# Train on ETTh1 dataset
bash scripts/ETTh1.sh
# Or run directly
python FusAD_Forecasting.py \
--root_path ./data/ETT-small \
--data ETTh1 \
--data_path ETTh1.csv \
--seq_len 512 \
--pred_len 96 \
--emb_dim 64 \
--depth 3 \
--batch_size 512If you find FusAD useful in your research, please consider citing:
@article{zhang2026fusad,
title={Time-Frequency Fusion with Adaptive Denoising for General Time Series Analysis},
author={Zhang, Da and Li, Bingyu and Zhao, Zhiyuan and Nie, Feiping and Gao, Junyu and Li, Xuelong},
journal={arXiv preprint arXiv:2512.14078},
year={2025}
}This project is licensed under the MIT License.
Our codebase is based on the following Github repositories. Thanks to the following public repositories:
Note: This is a research level repository and might contain issues/bugs. Please contact the authors for any query.