Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/mfem/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ MFEM_DEF = -DMFEM_DIR="\"$(abspath $(MFEM_DIR))\""
MFEM_LIB_FILE = mfem_is_not_built
-include $(wildcard $(CONFIG_MK))

MFEM_EXAMPLES = bp1 bp3
MFEM_EXAMPLES = bp1 bp3 biharmonic

.SUFFIXES:
.SUFFIXES: .cpp
Expand Down
159 changes: 159 additions & 0 deletions examples/mfem/biharmonic.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
// Copyright (c) 2017-2024, Lawrence Livermore National Security, LLC and other CEED contributors.
// All Rights Reserved. See the top-level LICENSE and NOTICE files for details.
//
// SPDX-License-Identifier: BSD-2-Clause
//
// This file is part of CEED: http://github.com/ceed

// libCEED + MFEM Example: BP1
//
// This example illustrates a simple usage of libCEED with the MFEM (mfem.org) finite element library.
//
// The example reads a mesh from a file and solves a simple linear system with a mass matrix (L2-projection of a given analytic function provided by
// 'solution'). The mass matrix required for performing the projection is expressed as a new class, CeedMassOperator, derived from mfem::Operator.
// Internally, CeedMassOperator uses a CeedOperator object constructed based on an mfem::FiniteElementSpace.
// All libCEED objects use a Ceed device object constructed based on a command line argument (-ceed).
Comment on lines +8 to +15
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This biharmonic example is not a BP, so this description needs to be updated

//
// The mass matrix is inverted using a simple conjugate gradient algorithm corresponding to CEED BP1, see http://ceed.exascaleproject.org/bps.
// Arbitrary mesh and solution orders in 1D, 2D and 3D are supported from the same code.
//
// Build with:
//
// make biharmonic [MFEM_DIR=</path/to/mfem>] [CEED_DIR=</path/to/libceed>]
//
// Sample runs:
//
// ./biharmonic
// ./biharmonic -ceed /cpu/self
// ./biharmonic -ceed /gpu/cuda
// ./biharmonic -m ../../../mfem/data/fichera.mesh
// ./biharmonic -m ../../../mfem/data/star.vtk -o 3
// ./biharmonic -m ../../../mfem/data/inline-segment.mesh -o 8

/// @file
/// MFEM mass operator based on libCEED
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this line also needs to be updated


#include "biharmonic.hpp"

#include <ceed.h>

#include <mfem.hpp>

/// Continuous function to project on the discrete FE space
double solution(const mfem::Vector &pt) {
return pt.Norml2(); // distance to the origin
}

//TESTARGS -ceed {ceed_resource} -t -no-vis --size 2000 --order 4
int main(int argc, char *argv[]) {
// 1. Parse command-line options.
const char *ceed_spec = "/cpu/self";
#ifndef MFEM_DIR
const char *mesh_file = "../../../mfem/data/star.mesh";
#else
const char *mesh_file = MFEM_DIR "/data/star.mesh";
#endif
int order = 1;
bool visualization = true;
bool test = false;
double max_nnodes = 50000;

mfem::OptionsParser args(argc, argv);
args.AddOption(&ceed_spec, "-c", "-ceed", "Ceed specification.");
args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use.");
args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree).");
args.AddOption(&max_nnodes, "-s", "--size", "Maximum size (number of DoFs)");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization.");
args.AddOption(&test, "-t", "--test", "-no-test", "--no-test", "Enable or disable test mode.");
args.Parse();
if (!args.Good()) {
args.PrintUsage(std::cout);
return 1;
}
if (!test) {
args.PrintOptions(std::cout);
}

// 2. Initialize a Ceed device object using the given Ceed specification.
Ceed ceed;
CeedInit(ceed_spec, &ceed);

// 3. Read the mesh from the given mesh file.
mfem::Mesh *mesh = new mfem::Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();

// 4. Refine the mesh to increase the resolution.
// In this example we do 'ref_levels' of uniform refinement.
// We choose 'ref_levels' to be the largest number that gives a final system with no more than 50,000 unknowns, approximately.
{
int ref_levels = (int)floor((log(max_nnodes / mesh->GetNE()) - dim * log(order)) / log(2.) / dim);
for (int l = 0; l < ref_levels; l++) {
mesh->UniformRefinement();
}
}
if (mesh->GetNodalFESpace() == NULL) {
mesh->SetCurvature(1, false, -1, mfem::Ordering::byNODES);
}
if (mesh->NURBSext) {
mesh->SetCurvature(order, false, -1, mfem::Ordering::byNODES);
}

// 5. Define a finite element space on the mesh.
// Here we use continuous Lagrange finite elements of the specified order.
MFEM_VERIFY(order > 0, "invalid order");
mfem::FiniteElementCollection *fec = new mfem::H1_FECollection(order, dim);
mfem::FiniteElementSpace *fespace = new mfem::FiniteElementSpace(mesh, fec);
if (!test) {
std::cout << "Number of finite element unknowns: " << fespace->GetTrueVSize() << std::endl;
}

// 6. Construct a rhs vector using the linear form f(v) = (solution, v), where v is a test function.
mfem::LinearForm b(fespace);
mfem::FunctionCoefficient sol_coeff(solution);
b.AddDomainIntegrator(new mfem::DomainLFIntegrator(sol_coeff));
b.Assemble();

// 7. Construct a CeedMassOperator utilizing the 'ceed' device and using the 'fespace' object to extract data needed by the Ceed objects.
CeedMassOperator mass(ceed, fespace);

// 8. Solve the discrete system using the conjugate gradients (CG) method.
mfem::CGSolver cg;
cg.SetRelTol(1e-6);
cg.SetMaxIter(100);
if (test) {
cg.SetPrintLevel(0);
} else {
cg.SetPrintLevel(3);
}
cg.SetOperator(mass);

mfem::GridFunction sol(fespace);
sol = 0.0;
cg.Mult(b, sol);

// 9. Compute and print the L2 projection error.
double err_l2 = sol.ComputeL2Error(sol_coeff);
if (!test) {
std::cout << "L2 projection error: " << err_l2 << std::endl;
} else {
if (fabs(sol.ComputeL2Error(sol_coeff)) > 2e-4) {
std::cout << "Error too large: " << err_l2 << std::endl;
}
}

// 10. Open a socket connection to GLVis and send the mesh and solution for visualization.
if (visualization) {
char vishost[] = "localhost";
int visport = 19916;
mfem::socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << sol << std::flush;
}

// 11. Free memory and exit.
delete fespace;
delete fec;
delete mesh;
CeedDestroy(&ceed);
return 0;
}
20 changes: 20 additions & 0 deletions examples/mfem/biharmonic.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#ifndef BIHARMONIC_H
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

#define BIHARMONIC_H

#include <mfem.hpp>
#include <ceed.h>
#include <string>

namespace biharmonic {
void InitializeDevice();
void InitializeCeed(Ceed &ceed, const std::string &resource = "/cpu/self");
mfem::Mesh *LoadMesh(const std::string &mesh_file);
mfem::FiniteElementSpace *SetupFESpace(mfem::Mesh *mesh, int order);
mfem::GridFunction *LoadRHS(const std::string &rhs_file, mfem::FiniteElementSpace *fespace);
void SetupQFunctions(Ceed ceed, CeedQFunction &qf_build, CeedQFunction &qf_apply, int dim);
CeedOperator BuildCeedOperator(mfem::FiniteElementSpace *fespace, CeedQFunction qf_apply, CeedQFunction qf_build, Ceed ceed);
void Solve(CeedOperator ceed_op, mfem::GridFunction &rhs, mfem::GridFunction &solution);
void SaveSolution(const mfem::GridFunction &solution, const std::string &filename);
} // namespace biharmonic

#endif // BIHARMONIC_H
17 changes: 17 additions & 0 deletions examples/mfem/biharmonic.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
#ifndef BIHARMONIC_HPP
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

#define BIHARMONIC_HPP

#include "biharmonic.h"
#include <ceed.h>

/// CEED QFunction for building quadrature data for diffusion
CEED_QFUNCTION(f_build_diff)(void *ctx, CeedInt Q,
const CeedScalar *const *in,
CeedScalar *const *out);

/// CEED QFunction for applying diffusion operator
CEED_QFUNCTION(f_apply_diff)(void *ctx, CeedInt Q,
const CeedScalar *const *in,
CeedScalar *const *out);

#endif // BIHARMONIC_HPP