Skip to content

feature: Retire Mistral 24.11 and Codestral 25.01 from Mistral Intro …

7517640
Select commit
Loading
Failed to load commit list.
Merged

feature: Retire Mistral 24.11 and Codestral 25.01 from Mistral Intro … #4427

feature: Retire Mistral 24.11 and Codestral 25.01 from Mistral Intro …
7517640
Select commit
Loading
Failed to load commit list.
Google Cloud Build / vertex-ai-notebook-execution-test (python-docs-samples-tests) succeeded Jan 23, 2026 in 9m 5s

Summary

Build Information

Trigger vertex-ai-notebook-execution-test
Build c608c6aa-eb9c-43c2-80bf-c93b614de21b
Start 2026-01-23T10:48:06-08:00
Duration 8m12.533s
Status SUCCESS

Steps

Step Status Duration
gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest SUCCESS 59.524s
gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest SUCCESS 617ms
gcr.io/cloud-builders/git SUCCESS 10.456s
gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest SUCCESS 5.03s
gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest SUCCESS 1m31.746s
gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest SUCCESS 5m17.411s

Details

starting build "c608c6aa-eb9c-43c2-80bf-c93b614de21b"

FETCHSOURCE
From https://github.com/GoogleCloudPlatform/vertex-ai-samples
 * branch            7517640c45bafa7696932416e68e29d82f915fa6 -> FETCH_HEAD
HEAD is now at 7517640 feature: Retire Mistral 24.11 and Codestral 25.01 from Mistral Intro files.
GitCommit:
7517640c45bafa7696932416e68e29d82f915fa6
BUILD
Starting Step #0
Step #0: Pulling image: gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Step #0: latest: Pulling from cloud-devrel-public-resources/python-samples-testing-docker
Step #0: 02de03a7213b: Pulling fs layer
Step #0: 568465458fe8: Pulling fs layer
Step #0: 1deb5bb7429b: Pulling fs layer
Step #0: 55936332897c: Pulling fs layer
Step #0: 8f4a7c44b36b: Pulling fs layer
Step #0: 2162648a6400: Pulling fs layer
Step #0: 42cd60258bde: Pulling fs layer
Step #0: 55ba3f7ac176: Pulling fs layer
Step #0: 534ec8c1c5b1: Pulling fs layer
Step #0: 32eaafec3f98: Pulling fs layer
Step #0: 641cd4bb1704: Pulling fs layer
Step #0: 0c1a5b0bf071: Pulling fs layer
Step #0: b7759272bd67: Pulling fs layer
Step #0: dfef83db03a8: Pulling fs layer
Step #0: 630d6e0d6e74: Pulling fs layer
Step #0: 7676069258eb: Pulling fs layer
Step #0: f5a71772832c: Pulling fs layer
Step #0: daa023595475: Pulling fs layer
Step #0: 178388208f1d: Pulling fs layer
Step #0: 2ae82c64a50a: Pulling fs layer
Step #0: 8f4e392da166: Pulling fs layer
Step #0: f04461289ef9: Pulling fs layer
Step #0: 5f14ef280edc: Pulling fs layer
Step #0: 99d6f22f43a1: Pulling fs layer
Step #0: 60d42c7c63a3: Pulling fs layer
Step #0: 1c4edf3835df: Pulling fs layer
Step #0: d914ea053cc4: Pulling fs layer
Step #0: 548a34145fcb: Pulling fs layer
Step #0: 83591b5d3d47: Pulling fs layer
Step #0: 0c1a5b0bf071: Waiting
Step #0: 55ba3f7ac176: Waiting
Step #0: b7759272bd67: Waiting
Step #0: dfef83db03a8: Waiting
Step #0: 1c4edf3835df: Waiting
Step #0: 630d6e0d6e74: Waiting
Step #0: f04461289ef9: Waiting
Step #0: 42cd60258bde: Waiting
Step #0: d914ea053cc4: Waiting
Step #0: 534ec8c1c5b1: Waiting
Step #0: 99d6f22f43a1: Waiting
Step #0: 5f14ef280edc: Waiting
Step #0: 32eaafec3f98: Waiting
Step #0: 641cd4bb1704: Waiting
Step #0: 60d42c7c63a3: Waiting
Step #0: f5a71772832c: Waiting
Step #0: 548a34145fcb: Waiting
Step #0: 83591b5d3d47: Waiting
Step #0: 7676069258eb: Waiting
Step #0: daa023595475: Waiting
Step #0: 8f4e392da166: Waiting
Step #0: 2ae82c64a50a: Waiting
Step #0: 1deb5bb7429b: Download complete
Step #0: 42cd60258bde: Verifying Checksum
Step #0: 42cd60258bde: Download complete
Step #0: 02de03a7213b: Verifying Checksum
Step #0: 02de03a7213b: Download complete
Step #0: 2162648a6400: Verifying Checksum
Step #0: 2162648a6400: Download complete
Step #0: 55936332897c: Verifying Checksum
Step #0: 55936332897c: Download complete
Step #0: 8f4a7c44b36b: Verifying Checksum
Step #0: 8f4a7c44b36b: Download complete
Step #0: 641cd4bb1704: Verifying Checksum
Step #0: 641cd4bb1704: Download complete
Step #0: 32eaafec3f98: Verifying Checksum
Step #0: 32eaafec3f98: Download complete
Step #0: 0c1a5b0bf071: Verifying Checksum
Step #0: 0c1a5b0bf071: Download complete
Step #0: b7759272bd67: Verifying Checksum
Step #0: b7759272bd67: Download complete
Step #0: 55ba3f7ac176: Verifying Checksum
Step #0: 55ba3f7ac176: Download complete
Step #0: dfef83db03a8: Verifying Checksum
Step #0: dfef83db03a8: Download complete
Step #0: 7676069258eb: Verifying Checksum
Step #0: 7676069258eb: Download complete
Step #0: 630d6e0d6e74: Verifying Checksum
Step #0: 630d6e0d6e74: Download complete
Step #0: f5a71772832c: Verifying Checksum
Step #0: f5a71772832c: Download complete
Step #0: 02de03a7213b: Pull complete
Step #0: daa023595475: Download complete
Step #0: 8f4e392da166: Verifying Checksum
Step #0: 8f4e392da166: Download complete
Step #0: 2ae82c64a50a: Verifying Checksum
Step #0: 2ae82c64a50a: Download complete
Step #0: 178388208f1d: Verifying Checksum
Step #0: 178388208f1d: Download complete
Step #0: 60d42c7c63a3: Verifying Checksum
Step #0: 60d42c7c63a3: Download complete
Step #0: 99d6f22f43a1: Verifying Checksum
Step #0: 99d6f22f43a1: Download complete
Step #0: 1c4edf3835df: Verifying Checksum
Step #0: 1c4edf3835df: Download complete
Step #0: 548a34145fcb: Verifying Checksum
Step #0: 548a34145fcb: Download complete
Step #0: 568465458fe8: Verifying Checksum
Step #0: 568465458fe8: Download complete
Step #0: 83591b5d3d47: Verifying Checksum
Step #0: 83591b5d3d47: Download complete
Step #0: f04461289ef9: Verifying Checksum
Step #0: f04461289ef9: Download complete
Step #0: 5f14ef280edc: Verifying Checksum
Step #0: 5f14ef280edc: Download complete
Step #0: d914ea053cc4: Verifying Checksum
Step #0: d914ea053cc4: Download complete
Step #0: 534ec8c1c5b1: Verifying Checksum
Step #0: 534ec8c1c5b1: Download complete
Step #0: 568465458fe8: Pull complete
Step #0: 1deb5bb7429b: Pull complete
Step #0: 55936332897c: Pull complete
Step #0: 8f4a7c44b36b: Pull complete
Step #0: 2162648a6400: Pull complete
Step #0: 42cd60258bde: Pull complete
Step #0: 55ba3f7ac176: Pull complete
Step #0: 534ec8c1c5b1: Pull complete
Step #0: 32eaafec3f98: Pull complete
Step #0: 641cd4bb1704: Pull complete
Step #0: 0c1a5b0bf071: Pull complete
Step #0: b7759272bd67: Pull complete
Step #0: dfef83db03a8: Pull complete
Step #0: 630d6e0d6e74: Pull complete
Step #0: 7676069258eb: Pull complete
Step #0: f5a71772832c: Pull complete
Step #0: daa023595475: Pull complete
Step #0: 178388208f1d: Pull complete
Step #0: 2ae82c64a50a: Pull complete
Step #0: 8f4e392da166: Pull complete
Step #0: f04461289ef9: Pull complete
Step #0: 5f14ef280edc: Pull complete
Step #0: 99d6f22f43a1: Pull complete
Step #0: 60d42c7c63a3: Pull complete
Step #0: 1c4edf3835df: Pull complete
Step #0: d914ea053cc4: Pull complete
Step #0: 548a34145fcb: Pull complete
Step #0: 83591b5d3d47: Pull complete
Step #0: Digest: sha256:e773d49a5e2018bbcd78cd58e4b965368ca4a2e5fc5394d3d5b01d2c4fc1da8a
Step #0: Status: Downloaded newer image for gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Step #0: gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Step #0: [core]
Step #0: account = 1012616486416@cloudbuild.gserviceaccount.com
Step #0: disable_prompts = True
Step #0: disable_usage_reporting = True
Step #0: project = python-docs-samples-tests
Step #0: 
Step #0: Your active configuration is: [default]
Finished Step #0
Starting Step #1
Step #1: Already have image (with digest): gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Step #1: Python version acceptable: 3.14.0 (main, Dec 17 2025, 21:14:36) [GCC 13.3.0]
Finished Step #1
Starting Step #2
Step #2: Already have image (with digest): gcr.io/cloud-builders/git
Step #2: 
Step #2:                    ***** NOTICE *****
Step #2: 
Step #2: Official `cloud-sdk` images, including multiple tagged versions across multiple
Step #2: platforms, can be found at
Step #2: https://github.com/GoogleCloudPlatform/cloud-sdk-docker and may be more suitable
Step #2: for some use cases when interacting with Cloud Source Repositories.
Step #2: 
Step #2: For additional information, please visit
Step #2: https://github.com/GoogleCloudPlatform/cloud-builders/tree/master/git
Step #2: 
Step #2:                 ***** END OF NOTICE *****
Step #2: 
Finished Step #2
Starting Step #3
Step #3: Already have image (with digest): gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Finished Step #3
Starting Step #4
Step #4: Already have image (with digest): gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Finished Step #4
Starting Step #5
Step #5: Already have image (with digest): gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Step #5: Copying file://source_archived_be8e319b-7f83-4302-9b3c-29c280b69432.tar.gz to gs://cloud-build-notebooks-presubmit/code_archives/source_archived_be8e319b-7f83-4302-9b3c-29c280b69432.tar.gz
Step #5:   
Step #5: ...
Step #5: 
Step #5: Average throughput: 144.8MiB/s
Step #5: Checking folders: ['notebooks/official', 'notebooks/notebook_template.ipynb']
Step #5: Looking for notebooks that changed from branch: 0a4091a3b1801911459959cd09e51ce5773c4225
Step #5: Found 1 notebooks:
Step #5: 	notebooks/official/generative_ai/mistralai_intro.ipynb
Step #5: Error: file does not exist .
Step #5: Found 1 modified notebooks: ['notebooks/official/generative_ai/mistralai_intro.ipynb']
Step #5: Running notebook: notebooks/official/generative_ai/mistralai_intro.ipynb
Step #5: Running notebook with python 3.10
Step #5: Uploaded source code archive to gs://cloud-build-notebooks-presubmit/code_archives/source_archived_be8e319b-7f83-4302-9b3c-29c280b69432.tar.gz
Step #5: notebooks/official/generative_ai/mistralai_intro.ipynb PASSED in 00:05:05.
Step #5: 
Step #5: === RESULTS ===
Step #5: 
Step #5: build_tag              status    duration    log_url                                                                                                                            output_uri                                                                                                                        output_uri_web                                                                                                                                              logs_bucket
Step #5: ---------------------  --------  ----------  ---------------------------------------------------------------------------------------------------------------------------------  --------------------------------------------------------------------------------------------------------------------------------  ----------------------------------------------------------------------------------------------------------------------------------------------------------  --------------------------------------------------------
Step #5: mistralai_intro.ipynb  PASSED    00:05:05    https://console.cloud.google.com/cloud-build/builds;region=us-central1/d9f9eb44-81a5-4bc0-b2a8-d31949c5cd24?project=1012616486416  gs://cloud-build-notebooks-presubmit/executed_notebooks/PR_4427/BUILD_c608c6aa-eb9c-43c2-80bf-c93b614de21b/mistralai_intro.ipynb  https://storage.googleapis.com/cloud-build-notebooks-presubmit/executed_notebooks/PR_4427/BUILD_c608c6aa-eb9c-43c2-80bf-c93b614de21b/mistralai_intro.ipynb  gs://1012616486416.cloudbuild-logs.googleusercontent.com
Step #5: ====================================================================================================
Step #5: The notebook execution build log:
Step #5: 
Step #5: ====================================================================================================
Step #5: Downloaded storage object log-d9f9eb44-81a5-4bc0-b2a8-d31949c5cd24.txt from bucket 1012616486416.cloudbuild-logs.googleusercontent.com.
Step #5: Starting Step #4
Step #5: Step #4: Already have image (with digest): gcr.io/cloud-devrel-public-resources/python-samples-testing-docker:latest
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.api_core once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.api_core past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform_v1beta1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform_v1beta1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform_v1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform_v1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.resourcemanager_v3 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.resourcemanager_v3 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1.schema.predict.instance_v1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1.schema.predict.instance_v1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1.schema.predict.params_v1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1.schema.predict.params_v1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1.schema.predict.prediction_v1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1.schema.predict.prediction_v1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1.schema.trainingjob.definition_v1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1.schema.trainingjob.definition_v1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1beta1.schema.predict.instance_v1beta1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1beta1.schema.predict.instance_v1beta1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1beta1.schema.predict.params_v1beta1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1beta1.schema.predict.params_v1beta1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1beta1.schema.predict.prediction_v1beta1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1beta1.schema.predict.prediction_v1beta1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: /workspace/workspace/env/lib/python3.10/site-packages/google/api_core/_python_version_support.py:275: FutureWarning: You are using a Python version (3.10.18) which Google will stop supporting in new releases of google.cloud.aiplatform.v1beta1.schema.trainingjob.definition_v1beta1 once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.cloud.aiplatform.v1beta1.schema.trainingjob.definition_v1beta1 past that date.
Step #5: Step #4:   warnings.warn(message, FutureWarning)
Step #5: Step #4: 
Step #5: Step #4: === DOWNLOAD EXECUTED NOTEBOOK ===
Step #5: Step #4: 
Step #5: Step #4: Please debug the executed notebook by downloading the executed notebook:
Step #5: Step #4: Option 1. Using gcloud storage. Run the following command in your terminal.
Step #5: Step #4: 	gcloud storage cp "gs://cloud-build-notebooks-presubmit/executed_notebooks/PR_4427/BUILD_c608c6aa-eb9c-43c2-80bf-c93b614de21b/mistralai_intro.ipynb" .
Step #5: Step #4: Option 2. Using this link.
Step #5: Step #4: 	https://storage.googleapis.com/cloud-build-notebooks-presubmit/executed_notebooks/PR_4427/BUILD_c608c6aa-eb9c-43c2-80bf-c93b614de21b/mistralai_intro.ipynb
Step #5: Step #4: 
Step #5: Step #4: ======
Step #5: Step #4: 
Step #5: Step #4: {"id":"54fb2fee58414032a1a6c15e293ca944","created":1769194517,"model":"mistral-medium-3","usage":{"prompt_tokens":10,"total_tokens":110,"completion_tokens":100},"object":"chat.completion","choices":[{"index":0,"finish_reason":"length","message":{"role":"assistant","tool_calls":null,"content":"Determining the \"best\" French painter is subjective, as it depends on personal taste, artistic criteria, and historical impact. However, several French painters are widely regarded as among the greatest in history. Here are some of the most celebrated:\n\n### **1. Claude Monet (1840–1926)**\n   - **Why?** The father of Impressionism, Monet revolutionized art with his focus on light, color, and nature. His *Water Lilies* series"}}]}The title of "best" French painter is subjective and depends on personal taste, artistic criteria, and historical impact. However, several French painters are widely regarded as among the greatest in art history. Here are some of the most celebrated:
Step #5: Step #4: 
Step #5: Step #4: ### **1. Claude Monet (1840–1926)**
Step #5: Step #4:    - **Why?** A founding father of **Impressionism**, Monet revolutionized art with his focus on light, color, and nature. His *Water Lilies* series and *Impression, Sunrise* (which gave the movement its name) are iconic.
Step #5: Step #4:    - **Key Works:** *Water Lilies*, *Impression, Sunrise*, *Rouen Cathedral Series*.
Step #5: Step #4: 
Step #5: Step #4: ### **2. Pierre-Auguste Renoir (1841–1919)**
Step #5: Step #4:    - **Why?** Another Impressionist master, Renoir is beloved for his vibrant, joyful depictions of people, especially women and children. His work exudes warmth and sensuality.
Step #5: Step #4:    - **Key Works:** *Bal du moulin de la Galette*, *Luncheon of the Boating Party*, *The Swing*.
Step #5: Step #4: 
Step #5: Step #4: ### **3. Édouard Manet (1832–1883)**
Step #5: Step #4:    - **Why?** A bridge between Realism and Impressionism, Manet challenged conventions with bold compositions and modern subjects. His *Olympia* and *Le Déjeuner sur l'herbe* caused scandals but redefined art.
Step #5: Step #4:    - **Key Works:** *Olympia*, *A Bar at the Folies-Bergère*, *The Execution of Emperor Maximilian*.
Step #5: Step #4: 
Step #5: Step #4: ### **4. Paul Cézanne (1839–1906)**
Step #5: Step #4:    - **Why?** Often called the "father of modern art," Cézanne’s structured brushwork and geometric approach influenced Cubism and later movements.
Step #5: Step #4:    - **Key Works:** *Mont Sainte-Victoire series*, *The Card Players*, *Still Life with Apples*.
Step #5: Step #4: 
Step #5: Step #4: ### **5. Henri Matisse (1869–1954)**
Step #5: Step #4:    - **Why?** A leader of **Fauvism**, Matisse used bold colors and fluid forms to create emotionally expressive works. His cut-outs are also revolutionary.
Step #5: Step #4:    - **Key Works:** *The Dance*, *The Green Stripe (Madame Matisse)*, *The Snail*.
Step #5: Step #4: 
Step #5: Step #4: ### **6. Georges Seurat (1859–1891)**
Step #5: Step #4:    - **Why?** The pioneer of **Pointillism**, Seurat’s meticulous dot technique created luminous, scientifically structured paintings.
Step #5: Step #4:    - **Key Works:** *A Sunday Afternoon on the Island of La Grande Jatte*, *Bathers at Asnières*.
Step #5: Step #4: 
Step #5: Step #4: ### **7. Eugène Delacroix (1798–1863)**
Step #5: Step #4:    - **Why?** A Romantic master, Delacroix’s dramatic, emotional works influenced generations, including the Impressionists.
Step #5: Step #4:    - **Key Works:** *Liberty Leading the People*, *The Death of Sardanapalus*.
Step #5: Step #4: 
Step #5: Step #4: ### **8. Jacques-Louis David (1748–1825)**
Step #5: Step #4:    - **Why?** The leading **Neoclassical** painter, David’s works defined the French Revolution’s visual identity.
Step #5: Step #4:    - **Key Works:** *The Death of Socrates*, *The Oath of the Horatii*, *Napoleon Crossing the Alps*.
Step #5: Step #4: 
Step #5: Step #4: ### **9. Paul Gauguin (1848–1903)**
Step #5: Step #4:    - **Why?** A Post-Impressionist who blended Symbolism and Primitivism, Gauguin’s Tahitian works are vivid and mysterious.
Step #5: Step #4:    - **Key Works:** *Where Do We Come From? What Are We? Where Are We Going?*, *The Yellow Christ*.
Step #5: Step #4: 
Step #5: Step #4: ### **10. Jean-Auguste-Dominique Ingres (1780–1867)**
Step #5: Step #4:    - **Why?** A master of **Neoclassical** portraiture and line precision, Ingres was a rival to Delacroix.
Step #5: Step #4:    - **Key Works:** *La Grande Odalisque*, *Portrait of Monsieur Bertin*.
Step #5: Step #4: 
Step #5: Step #4: ### **Who is the "Best"?**
Step #5: Step #4: - **For Impressionism:** Monet or Renoir.
Step #5: Step #4: - **For Modern Art:** Cézanne or Matisse.
Step #5: Step #4: - **For Revolutionary Impact:** Manet or Delacroix.
Step #5: Step #4: - **For Technical Mastery:** David or Ingres.
Step #5: Step #4: 
Step #5: Step #4: Ultimately, the "best" depends on what you value most in art—innovation, emotion, technique, or influence. Monet and Cézanne are often top contenders for their lasting impact on art history.
Step #5: Step #4: 
Step #5: Step #4: Would you like recommendations based on a specific style or era?
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"The"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" title"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" of \""},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"best"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"\""},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" French painter is subjective"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" and depends on personal"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" taste"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":","},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" artistic"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" criteria"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":", and historical"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" impact"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":". However, several"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" French"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" painters are"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" widely"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" regarded"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" as among"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" the greatest"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" in"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" art"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" history. Here are"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" some"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" of the most celebrated"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":":\n\n"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"###"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" **"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"1. Claude"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" Monet ("},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"184"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"0"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"–"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"192"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"6"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":")**\n  "},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" - **Why"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"?**"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" A"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" founder"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" of **"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"Im"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"pressionism**, Monet"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" revolution"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"ized painting"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" with"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" his focus"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" on light"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":", color, and"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" nature"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":". His *"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"Water"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":" Lil"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"6319f98318424f9fbf12af66d4160160","object":"chat.completion.chunk","created":1769194533,"model":"mistral-medium-3","choices":[{"index":0,"delta":{"content":"ies* series"},"finish_reason":"length"}],"usage":{"prompt_tokens":10,"total_tokens":110,"completion_tokens":100}}
Step #5: Step #4: 
Step #5: Step #4: data: [DONE]
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":":\n"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":"    #"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" Split"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" the input"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" string"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" into words\n   "},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" words = name.split"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":"()\n    # Count"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" the number of words"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":"\n    n_words"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" = len(words)\n"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":"    # Return the"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" count"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" as"},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":" a string\n    "},"finish_reason":null}]}
Step #5: Step #4: 
Step #5: Step #4: data: {"id":"7919f0fd74e14adb9d58fba41eca5ce5","object":"chat.completion.chunk","created":1769194536,"model":"codestral-2","choices":[{"index":0,"delta":{"content":""},"finish_reason":"stop"}],"usage":{"prompt_tokens":17,"total_tokens":59,"completion_tokens":42}}
Step #5: Step #4: 
Step #5: Step #4: data: [DONE]
Step #5: Step #4: 
Step #5: Step #4: a: int, b: int) -> int:
Step #5: Step #4:     """
Step #5: Step #4:     You are given two integers `a` and `b`. Your task is to implement a function `f(a,
Step #5: Step #4:     b)` that returns the sum of `a` and `b`. The function should be implemented in a
Step #5: Step #4:     way that it
Step #5: Step #4: Claude Monet is often regarded as one of the best French painters, renowned for his pioneering role in Impressionism.
Step #5: Step #4: 
Step #5: Step #4: Cla
Step #5: Step #4: ude Monet is
Step #5: Step #4:  often considered one
Step #5: Step #4:  of the best French
Step #5: Step #4:  painters,
Step #5: Step #4:  renowned
Step #5: Step #4:  for his pioneering
Step #5: Step #4:  role
Step #5: Step #4:  in Im
Step #5: Step #4: pressionism
Step #5: Step #4: .
Step #5: Step #4: :
Step #5: Step #4:     """
Step #5: Step #4:     You are given a text file containing a large amount of text. Your task is to
Step #5: Step #4:     write a Python program that reads the file and counts the number of words in
Step #5: Step #4:     the file. The program should handle large files efficiently and should be able
Step #5: Step #4:     to process the file in a reasonable amount of time. As a reminder, your code
Step #5: Step #4:     has to be in python
Step #5: Step #4:     """
Step #5: Step #4:     n_words = 0
Step #5: Step #4:     with open(file_path, 'r', encoding='utf-8') as file:
Step #5: Step #4:         for line in file:
Step #5: Step #4:             words = line.split()
Step #5: Step #4:             n_words += len(words)
Step #5: Step #4:     
Step #5: Step #4: 
Step #5: Step #4: function_name:  retrieve_payment_status 
Step #5: Step #4: function_params:  {'transaction_id': 'T1001'}
Step #5: Step #4: {"id":"c5b96ab2e78c4216abd541a9dd4fa7c6","created":1769194557,"model":"codestral-2","usage":{"prompt_tokens":19,"total_tokens":58,"completion_tokens":39},"object":"chat.completion","choices":[{"index":0,"finish_reason":"stop","message":{"role":"assistant","tool_calls":null,"content":"{\n  \"best_french_cheese\": {\n    \"product\": \"Roquefort\",\n    \"produce_location\": \"Aveyron, Midi-Pyrénées\"\n  }\n}"}}]}{
Step #5: Step #4:   "best_french_cheese": {
Step #5: Step #4:     "product": "Roquefort",
Step #5: Step #4:     "produce_location": "Aveyron, Midi-Pyrénées"
Step #5: Step #4:   }
Step #5: Step #4: }
Step #5: Step #4: Request failed with status code: 400
Step #5: Step #4: 
Executing:   0%|          | 0/87 [00:00<?, ?cell/s]
Executing:   1%|          | 1/87 [00:01<01:46,  1.24s/cell]
Executing:   6%|▌         | 5/87 [00:01<00:17,  4.80cell/s]
Executing:   9%|▉         | 8/87 [00:01<00:09,  8.00cell/s]
Executing:  14%|█▍        | 12/87 [00:01<00:06, 10.72cell/s]
Executing:  18%|█▊        | 16/87 [00:01<00:05, 13.41cell/s]
Executing:  23%|██▎       | 20/87 [00:05<00:22,  2.95cell/s]
Executing:  25%|██▌       | 22/87 [00:17<01:44,  1.60s/cell]
Executing:  28%|██▊       | 24/87 [00:20<01:39,  1.57s/cell]
Executing:  31%|███       | 27/87 [00:20<01:04,  1.07s/cell]
Executing:  33%|███▎      | 29/87 [00:22<00:59,  1.03s/cell]
Executing:  36%|███▌      | 31/87 [00:24<00:58,  1.04s/cell]
Executing:  39%|███▉      | 34/87 [00:33<01:30,  1.72s/cell]
Executing:  43%|████▎     | 37/87 [00:33<00:57,  1.15s/cell]
Executing:  45%|████▍     | 39/87 [00:34<00:46,  1.04cell/s]
Executing:  48%|████▊     | 42/87 [00:34<00:29,  1.54cell/s]
Executing:  52%|█████▏    | 45/87 [00:34<00:18,  2.22cell/s]
Executing:  55%|█████▌    | 48/87 [00:35<00:12,  3.12cell/s]
Executing:  59%|█████▊    | 51/87 [00:35<00:08,  4.30cell/s]
Executing:  62%|██████▏   | 54/87 [00:36<00:11,  2.98cell/s]
Executing:  64%|██████▍   | 56/87 [00:38<00:12,  2.54cell/s]
Executing:  67%|██████▋   | 58/87 [00:39<00:14,  2.06cell/s]
Executing:  70%|███████   | 61/87 [00:39<00:08,  3.02cell/s]
Executing:  72%|███████▏  | 63/87 [00:40<00:07,  3.22cell/s]
Executing:  76%|███████▌  | 66/87 [00:40<00:04,  4.57cell/s]
Executing:  78%|███████▊  | 68/87 [00:41<00:05,  3.38cell/s]
Executing:  82%|████████▏ | 71/87 [00:41<00:03,  4.82cell/s]
Executing:  85%|████████▌ | 74/87 [00:41<00:01,  6.51cell/s]
Executing:  87%|████████▋ | 76/87 [00:43<00:03,  2.99cell/s]
Executing:  90%|████████▉ | 78/87 [00:45<00:04,  2.10cell/s]
Executing:  92%|█████████▏| 80/87 [00:46<00:03,  2.11cell/s]
Executing:  95%|█████████▌| 83/87 [00:46<00:01,  3.15cell/s]
Executing:  98%|█████████▊| 85/87 [00:46<00:00,  3.77cell/s]
Executing: 100%|██████████| 87/87 [00:47<00:00,  1.85cell/s]
Step #5: Step #4: Copying file://notebooks/official/generative_ai/mistralai_intro.ipynb to gs://cloud-build-notebooks-presubmit/executed_notebooks/PR_4427/BUILD_c608c6aa-eb9c-43c2-80bf-c93b614de21b/mistralai_intro.ipynb
Step #5: Step #4:   
Step #5: Step #4: .
Step #5: Step #4: 
Step #5: Step #4: === EXECUTION FINISHED ===
Step #5: Step #4: 
Step #5: Finished Step #4
Step #5: PUSH
Step #5: DONE
Step #5: 
Step #5: Updating build results ...
Step #5: adding notebooks/official/generative_ai/mistralai_intro.ipynb
Step #5: Saving accumulative results to build_results/c608c6aa-eb9c-43c2-80bf-c93b614de21b.json, nentries 1
Step #5: 
Step #5: === END RESULTS===
Step #5: 
Step #5: Cumulative notebook duration: 00:05:05
Finished Step #5
PUSH
DONE

Build Log: https://console.cloud.google.com/cloud-build/builds;region=us-central1/c608c6aa-eb9c-43c2-80bf-c93b614de21b?project=1012616486416