This repository contains code for a Depth enhanced edge-based Infrared-LiDAR SLAM system for ROS. It integrates the open source works of rebvo and Lego-LOAM to generate this work.The system takes in point cloud from a Velodyne VLP-16 Lidar and thermal infrared images as inputs. It output 6D pose estimation in all-day.
-- C++11
-- Linux, X11, v4l2
-- OpenGL development libraries (GL,GLU,glut)
-- PCL1.7
-- TooN 2.2 mathematical library (http://www.edwardrosten.com/cvd/toon.html - ZIP provided in the repo)
-- Lapack (for advanced TooN functions)
-- LibAV (Video Codecs)
-- Libgd (sudo apt-get install libgd-dev)
./configure && make && sudo make installcd rebvo/rebvolib/
/usr/lib/x86_64-linux-gnu/qt5/bin/qmake -spec linux-g++-64 -o Makefile rebvolib.pro
cd rebvo/
/usr/lib/x86_64-linux-gnu/qt5/bin/qmake -spec linux-g++-64 -o Makefile rebvo.pro
make REBVOFLAGS=-m64The system use the Calc2.0 to infrared scene recognition. To get start, refer the Calc2.0 to configure the environment and train the model.
cd rebvo/ros/
catkin_make- configure the related parameters in rebvo/ros/src/thermal_loam/cfg/rebvo_thermal.yaml
- Run the launch file:
roslaunch rebvo run.launch- Play existing bag files:
rosbag play *.bag --clock --topic /velodyne_points /camera/image_raw if completing the configuration of Calc's environments, run the python file:bash
cd calc2.0/
python loopDetector.py- Datasets
https://pan.baidu.com/s/1Gq-6ztc59uVvobezGktLVQ 提取码: dgtkIf you think this work is meaningful, please cite:
@article{chen2022eil,
title={EIL-SLAM: depth-enhanced edge-based infrared-lidar SLAM},
author={Chen, Wenqiang and Wang, Yu and Chen, Haoyao and Liu, Yunhui},
journal={Journal of Field Robotics},
volume={39},
number={2},
pages={117--130},
year={2022},
publisher={Wiley Online Library}
}