Skip to content
Draft
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/analysis/series-metric-abelian-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ module _
( cons-sum-fin-sequence-type-Ab
( ab-Metric-Ab G)
( n)
( f ∘ nat-Fin (succ-ℕ n)) refl)
( f ∘ nat-Fin (succ-ℕ n)))
( refl) ∙
is-identity-left-conjugation-Ab (ab-Metric-Ab G) _ _
```
Expand Down
118 changes: 61 additions & 57 deletions src/commutative-algebra/geometric-sequences-commutative-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -141,13 +141,14 @@ module _
seq-geometric-sequence-Commutative-Ring R
standard-geometric-sequence-Commutative-Ring

is-geometric-standard-geometric-sequence-Commutative-Ring :
is-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( seq-standard-geometric-sequence-Commutative-Ring)
is-geometric-standard-geometric-sequence-Commutative-Ring =
is-geometric-seq-geometric-sequence-Commutative-Ring R
standard-geometric-sequence-Commutative-Ring
abstract
is-geometric-standard-geometric-sequence-Commutative-Ring :
is-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( seq-standard-geometric-sequence-Commutative-Ring)
is-geometric-standard-geometric-sequence-Commutative-Ring =
is-geometric-seq-geometric-sequence-Commutative-Ring R
standard-geometric-sequence-Commutative-Ring
```

### The geometric sequences `n ↦ a * rⁿ`
Expand All @@ -174,10 +175,11 @@ module _
( R)
( geometric-mul-pow-nat-Commutative-Ring)

eq-initial-term-mul-pow-nat-Commutative-Ring :
initial-term-mul-pow-nat-Commutative-Ring = a
eq-initial-term-mul-pow-nat-Commutative-Ring =
right-unit-law-mul-Commutative-Ring R a
abstract
eq-initial-term-mul-pow-nat-Commutative-Ring :
initial-term-mul-pow-nat-Commutative-Ring = a
eq-initial-term-mul-pow-nat-Commutative-Ring =
right-unit-law-mul-Commutative-Ring R a
```

## Properties
Expand All @@ -190,16 +192,17 @@ module _
(u : geometric-sequence-Commutative-Ring R)
where

htpy-seq-standard-geometric-sequence-Commutative-Ring :
( seq-geometric-sequence-Commutative-Ring R
( standard-geometric-sequence-Commutative-Ring R
( initial-term-geometric-sequence-Commutative-Ring R u)
( common-ratio-geometric-sequence-Commutative-Ring R u))) ~
( seq-geometric-sequence-Commutative-Ring R u)
htpy-seq-standard-geometric-sequence-Commutative-Ring =
htpy-seq-standard-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( u)
abstract
htpy-seq-standard-geometric-sequence-Commutative-Ring :
( seq-geometric-sequence-Commutative-Ring R
( standard-geometric-sequence-Commutative-Ring R
( initial-term-geometric-sequence-Commutative-Ring R u)
( common-ratio-geometric-sequence-Commutative-Ring R u))) ~
( seq-geometric-sequence-Commutative-Ring R u)
htpy-seq-standard-geometric-sequence-Commutative-Ring =
htpy-seq-standard-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( u)
```

### The nth term of a geometric sequence with initial term `a` and common ratio `r` is `a * rⁿ`
Expand All @@ -209,20 +212,21 @@ module _
{l : Level} (R : Commutative-Ring l) (a r : type-Commutative-Ring R)
where

htpy-mul-pow-standard-geometric-sequence-Commutative-Ring :
mul-pow-nat-Commutative-Ring R a r ~
seq-standard-geometric-sequence-Commutative-Ring R a r
htpy-mul-pow-standard-geometric-sequence-Commutative-Ring =
htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( a)
( r)
abstract
htpy-mul-pow-standard-geometric-sequence-Commutative-Ring :
mul-pow-nat-Commutative-Ring R a r ~
seq-standard-geometric-sequence-Commutative-Ring R a r
htpy-mul-pow-standard-geometric-sequence-Commutative-Ring =
htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( a)
( r)

initial-term-standard-geometric-sequence-Commutative-Ring :
seq-standard-geometric-sequence-Commutative-Ring R a r 0 = a
initial-term-standard-geometric-sequence-Commutative-Ring =
( inv (htpy-mul-pow-standard-geometric-sequence-Commutative-Ring 0)) ∙
( eq-initial-term-mul-pow-nat-Commutative-Ring R a r)
initial-term-standard-geometric-sequence-Commutative-Ring :
seq-standard-geometric-sequence-Commutative-Ring R a r 0 = a
initial-term-standard-geometric-sequence-Commutative-Ring =
( inv (htpy-mul-pow-standard-geometric-sequence-Commutative-Ring 0)) ∙
( eq-initial-term-mul-pow-nat-Commutative-Ring R a r)
```

```agda
Expand All @@ -231,22 +235,23 @@ module _
(u : geometric-sequence-Commutative-Ring R)
where

htpy-mul-pow-geometric-sequence-Commutative-Ring :
mul-pow-nat-Commutative-Ring
( R)
( initial-term-geometric-sequence-Commutative-Ring R u)
( common-ratio-geometric-sequence-Commutative-Ring R u) ~
seq-geometric-sequence-Commutative-Ring R u
htpy-mul-pow-geometric-sequence-Commutative-Ring n =
( htpy-mul-pow-standard-geometric-sequence-Commutative-Ring
( R)
( initial-term-geometric-sequence-Commutative-Ring R u)
( common-ratio-geometric-sequence-Commutative-Ring R u)
( n)) ∙
( htpy-seq-standard-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( u)
( n))
abstract
htpy-mul-pow-geometric-sequence-Commutative-Ring :
mul-pow-nat-Commutative-Ring
( R)
( initial-term-geometric-sequence-Commutative-Ring R u)
( common-ratio-geometric-sequence-Commutative-Ring R u) ~
seq-geometric-sequence-Commutative-Ring R u
htpy-mul-pow-geometric-sequence-Commutative-Ring n =
( htpy-mul-pow-standard-geometric-sequence-Commutative-Ring
( R)
( initial-term-geometric-sequence-Commutative-Ring R u)
( common-ratio-geometric-sequence-Commutative-Ring R u)
( n)) ∙
( htpy-seq-standard-geometric-sequence-Commutative-Semiring
( commutative-semiring-Commutative-Ring R)
( u)
( n))
```

### Constant sequences are geometric with common ratio one
Expand Down Expand Up @@ -347,16 +352,15 @@ module _
equational-reasoning
sum-standard-geometric-fin-sequence-Commutative-Ring R a r (succ-ℕ n)
sum-standard-geometric-fin-sequence-Commutative-Ring R a r n +R
seq-standard-geometric-sequence-Commutative-Ring R a r n
( sum-standard-geometric-fin-sequence-Commutative-Ring R a r n) +R
( seq-standard-geometric-sequence-Commutative-Ring R a r n)
by
cons-sum-fin-sequence-type-Commutative-Ring R
( n)
( standard-geometric-fin-sequence-Commutative-Ring R
( a)
( r)
( succ-ℕ n))
( refl)
( (a *R 1/⟨1-r⟩) *R (one-R -R power-Commutative-Ring R n r)) +R
( a *R power-Commutative-Ring R n r)
Expand All @@ -380,12 +384,12 @@ module _
( refl)
( inv (left-unit-law-mul-Commutative-Ring R _)))
a *R
( a) *R
( (1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r)) +R
(one-R *R power-Commutative-Ring R n r))
by inv (left-distributive-mul-add-Commutative-Ring R a _ _)
a *R
( a) *R
( ( 1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r)) +R
( (1/⟨1-r⟩ *R (one-R -R r)) *R power-Commutative-Ring R n r))
by
Expand All @@ -395,7 +399,7 @@ module _
( refl)
( ap-mul-Commutative-Ring R (inv (pr2 H)) refl))
a *R
( a) *R
( ( 1/⟨1-r⟩ *R (one-R -R power-Commutative-Ring R n r)) +R
( 1/⟨1-r⟩ *R ((one-R -R r) *R power-Commutative-Ring R n r)))
by
Expand All @@ -405,7 +409,7 @@ module _
( refl)
( associative-mul-Commutative-Ring R _ _ _))
a *R
( a) *R
( 1/⟨1-r⟩ *R
( ( one-R -R power-Commutative-Ring R n r) +R
( (one-R -R r) *R power-Commutative-Ring R n r)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -174,10 +174,11 @@ module _
( R)
( geometric-mul-pow-nat-Commutative-Semiring)

eq-initial-term-mul-pow-nat-Commutative-Semiring :
initial-term-mul-pow-nat-Commutative-Semiring = a
eq-initial-term-mul-pow-nat-Commutative-Semiring =
right-unit-law-mul-Commutative-Semiring R a
abstract
eq-initial-term-mul-pow-nat-Commutative-Semiring :
initial-term-mul-pow-nat-Commutative-Semiring = a
eq-initial-term-mul-pow-nat-Commutative-Semiring =
right-unit-law-mul-Commutative-Semiring R a
```

## Properties
Expand All @@ -190,16 +191,17 @@ module _
(u : geometric-sequence-Commutative-Semiring R)
where

htpy-seq-standard-geometric-sequence-Commutative-Semiring :
( seq-geometric-sequence-Commutative-Semiring R
( standard-geometric-sequence-Commutative-Semiring R
( initial-term-geometric-sequence-Commutative-Semiring R u)
( common-ratio-geometric-sequence-Commutative-Semiring R u))) ~
( seq-geometric-sequence-Commutative-Semiring R u)
htpy-seq-standard-geometric-sequence-Commutative-Semiring =
htpy-seq-standard-geometric-sequence-Semiring
( semiring-Commutative-Semiring R)
( u)
abstract
htpy-seq-standard-geometric-sequence-Commutative-Semiring :
( seq-geometric-sequence-Commutative-Semiring R
( standard-geometric-sequence-Commutative-Semiring R
( initial-term-geometric-sequence-Commutative-Semiring R u)
( common-ratio-geometric-sequence-Commutative-Semiring R u))) ~
( seq-geometric-sequence-Commutative-Semiring R u)
htpy-seq-standard-geometric-sequence-Commutative-Semiring =
htpy-seq-standard-geometric-sequence-Semiring
( semiring-Commutative-Semiring R)
( u)
```

### The nth term of a geometric sequence with initial term `a` and common ratio `r` is `a * rⁿ`
Expand All @@ -218,11 +220,12 @@ module _
( a)
( r)

initial-term-standard-geometric-sequence-Commutative-Semiring :
seq-standard-geometric-sequence-Commutative-Semiring R a r 0 = a
initial-term-standard-geometric-sequence-Commutative-Semiring =
( inv (htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring 0)) ∙
( eq-initial-term-mul-pow-nat-Commutative-Semiring R a r)
abstract
initial-term-standard-geometric-sequence-Commutative-Semiring :
seq-standard-geometric-sequence-Commutative-Semiring R a r 0 = a
initial-term-standard-geometric-sequence-Commutative-Semiring =
( inv (htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring 0)) ∙
( eq-initial-term-mul-pow-nat-Commutative-Semiring R a r)
```

```agda
Expand All @@ -231,22 +234,23 @@ module _
(u : geometric-sequence-Commutative-Semiring R)
where

htpy-mul-pow-geometric-sequence-Commutative-Semiring :
mul-pow-nat-Commutative-Semiring
( R)
( initial-term-geometric-sequence-Commutative-Semiring R u)
( common-ratio-geometric-sequence-Commutative-Semiring R u) ~
seq-geometric-sequence-Commutative-Semiring R u
htpy-mul-pow-geometric-sequence-Commutative-Semiring n =
( htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring
( R)
( initial-term-geometric-sequence-Commutative-Semiring R u)
( common-ratio-geometric-sequence-Commutative-Semiring R u)
( n)) ∙
( htpy-seq-standard-geometric-sequence-Semiring
( semiring-Commutative-Semiring R)
( u)
( n))
abstract
htpy-mul-pow-geometric-sequence-Commutative-Semiring :
mul-pow-nat-Commutative-Semiring
( R)
( initial-term-geometric-sequence-Commutative-Semiring R u)
( common-ratio-geometric-sequence-Commutative-Semiring R u) ~
seq-geometric-sequence-Commutative-Semiring R u
htpy-mul-pow-geometric-sequence-Commutative-Semiring n =
( htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring
( R)
( initial-term-geometric-sequence-Commutative-Semiring R u)
( common-ratio-geometric-sequence-Commutative-Semiring R u)
( n)) ∙
( htpy-seq-standard-geometric-sequence-Semiring
( semiring-Commutative-Semiring R)
( u)
( n))
```

### Constant sequences are geometric with common ratio one
Expand Down Expand Up @@ -327,7 +331,6 @@ module _
( a)
( r)
( succ-ℕ n))
( refl)
add-Commutative-Semiring R
( seq-standard-geometric-sequence-Commutative-Semiring R a r 0)
Expand Down Expand Up @@ -438,9 +441,9 @@ module _
( ap-mul-Commutative-Semiring R
( refl)
( htpy-sum-fin-sequence-type-Commutative-Semiring R n
( htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring
( ( htpy-mul-pow-standard-geometric-sequence-Commutative-Semiring
( R)
( a)
( r) ∘
nat-Fin n)))
( r))
( nat-Fin n))))
```
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ module _
(f : unit → type-Commutative-Ring A) →
sum-finite-Commutative-Ring A unit-Finite-Type f = f star
sum-unit-finite-Commutative-Ring =
sum-unit-finite-Ring (ring-Commutative-Ring A)
sum-unit-finite-type-Ring (ring-Commutative-Ring A)
```

### Sums are homotopy invariant
Expand Down Expand Up @@ -197,7 +197,7 @@ module _
(f : type-Finite-Type A → type-Commutative-Ring R) →
is-zero-Commutative-Ring R (sum-finite-Commutative-Ring R A f)
eq-zero-sum-finite-is-empty-Commutative-Ring =
eq-zero-sum-finite-is-empty-Ring (ring-Commutative-Ring R) A H
is-zero-sum-finite-is-empty-Ring (ring-Commutative-Ring R) A H
```

### The sum over a finite type is the sum over any count for that type
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ module _
(f : unit → type-Commutative-Semiring A) →
sum-finite-Commutative-Semiring A unit-Finite-Type f = f star
sum-unit-finite-Commutative-Semiring =
sum-unit-finite-Semiring (semiring-Commutative-Semiring A)
sum-unit-finite-type-Semiring (semiring-Commutative-Semiring A)
```

### Sums over contractible types
Expand Down Expand Up @@ -230,7 +230,7 @@ module _
(f : type-Finite-Type A → type-Commutative-Semiring R) →
is-zero-Commutative-Semiring R (sum-finite-Commutative-Semiring R A f)
eq-zero-sum-finite-is-empty-Commutative-Semiring =
eq-zero-sum-finite-is-empty-Semiring (semiring-Commutative-Semiring R) A H
is-zero-sum-finite-is-empty-Semiring (semiring-Commutative-Semiring R) A H
```

### The sum over a finite type is the sum over any count for that type
Expand Down
Loading