Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 93 additions & 0 deletions src/Categories/Diagram/Pullback/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -189,3 +189,96 @@ module IsoPb {X Y Z} {f : X ⇒ Z} {g : Y ⇒ Z} (pull₀ pull₁ : Pullback f g

p₂-≈ : p₂ pull₁ ∘ P₀⇒P₁ ≈ p₂ pull₀
p₂-≈ = p₂∘universal≈h₂ pull₁ {eq = commute pull₀}


-- pasting law for pullbacks:
-- in a commutative diagram of the form
-- A -> B -> C
-- | | |
-- D -> E -> F
-- if the right square (BCEF) is a pullback,
-- then the left square (ABDE) is a pullback
-- iff the big square (ACDF) is a pullback.
module PullbackPastingLaw {A B C D E F : Obj}
{f : A ⇒ B} {g : B ⇒ C} {h : A ⇒ D} {i : B ⇒ E} {j : C ⇒ F} {k : D ⇒ E} {l : E ⇒ F}
(ABDE : i ∘ f ≈ k ∘ h) (BCEF : j ∘ g ≈ l ∘ i) (pbᵣ : IsPullback g i j l) where

open IsPullback using (p₁∘universal≈h₁; p₂∘universal≈h₂; universal; unique-diagram)

leftPullback⇒bigPullback : IsPullback f h i k → IsPullback (g ∘ f) h j (l ∘ k)
leftPullback⇒bigPullback pbₗ = record
{ commute = ACDF
; universal = universalb
; p₁∘universal≈h₁ = [g∘f]∘universalb≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂ pbₗ
; unique-diagram = unique-diagramb
} where
ACDF : j ∘ (g ∘ f) ≈ (l ∘ k) ∘ h
ACDF = begin
j ∘ g ∘ f ≈⟨ extendʳ BCEF ⟩
l ∘ i ∘ f ≈⟨ pushʳ ABDE ⟩
(l ∘ k) ∘ h ∎

-- first apply universal property of (BCEF) to get a morphism H -> B,
-- then apply universal property of (ABDE) to get a morphism H -> A.
universalb : {H : Obj} {h₁ : H ⇒ C} {h₂ : H ⇒ D} → j ∘ h₁ ≈ (l ∘ k) ∘ h₂ → H ⇒ A
universalb {_} {h₁} {h₂} eq = universal pbₗ (p₂∘universal≈h₂ pbᵣ {eq = j∘h₁≈l∘k∘h₂}) where
j∘h₁≈l∘k∘h₂ : j ∘ h₁ ≈ l ∘ k ∘ h₂
j∘h₁≈l∘k∘h₂ = begin
j ∘ h₁ ≈⟨ eq ⟩
(l ∘ k) ∘ h₂ ≈⟨ assoc ⟩
l ∘ k ∘ h₂ ∎

[g∘f]∘universalb≈h₁ : {H : Obj} {h₁ : H ⇒ C} {h₂ : H ⇒ D} {eq : j ∘ h₁ ≈ (l ∘ k) ∘ h₂} → (g ∘ f) ∘ universalb eq ≈ h₁
[g∘f]∘universalb≈h₁ {h₁ = h₁} = begin
(g ∘ f) ∘ universalb _ ≈⟨ pullʳ (p₁∘universal≈h₁ pbₗ) ⟩
g ∘ universal pbᵣ _ ≈⟨ p₁∘universal≈h₁ pbᵣ ⟩
h₁ ∎

unique-diagramb : {H : Obj} {s t : H ⇒ A} → (g ∘ f) ∘ s ≈ (g ∘ f) ∘ t → h ∘ s ≈ h ∘ t → s ≈ t
unique-diagramb {_} {s} {t} eq eq' = unique-diagram pbₗ (unique-diagram pbᵣ g∘f∘s≈g∘f∘t i∘f∘s≈i∘f∘t) eq' where
g∘f∘s≈g∘f∘t : g ∘ f ∘ s ≈ g ∘ f ∘ t
g∘f∘s≈g∘f∘t = begin
g ∘ f ∘ s ≈⟨ sym-assoc ⟩
(g ∘ f) ∘ s ≈⟨ eq ⟩
(g ∘ f) ∘ t ≈⟨ assoc ⟩
g ∘ f ∘ t ∎
i∘f∘s≈i∘f∘t : i ∘ f ∘ s ≈ i ∘ f ∘ t
i∘f∘s≈i∘f∘t = begin
i ∘ f ∘ s ≈⟨ pullˡ ABDE ⟩
(k ∘ h) ∘ s ≈⟨ pullʳ eq' ⟩
k ∘ h ∘ t ≈⟨ extendʳ (sym ABDE) ⟩
i ∘ f ∘ t ∎

bigPullback⇒leftPullback : IsPullback (g ∘ f) h j (l ∘ k) → IsPullback f h i k
bigPullback⇒leftPullback pbb = record
{ commute = ABDE
; universal = universalₗ
; p₁∘universal≈h₁ = f∘universalₗ≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂ pbb
; unique-diagram = unique-diagramb
} where
universalₗ : {H : Obj} {h₁ : H ⇒ B} {h₂ : H ⇒ D} → i ∘ h₁ ≈ k ∘ h₂ → H ⇒ A
universalₗ {_} {h₁} {h₂} eq = universal pbb j∘g∘h₁≈[l∘k]∘h₂ where
j∘g∘h₁≈[l∘k]∘h₂ : j ∘ g ∘ h₁ ≈ (l ∘ k) ∘ h₂
j∘g∘h₁≈[l∘k]∘h₂ = begin
j ∘ g ∘ h₁ ≈⟨ pullˡ BCEF ⟩
(l ∘ i) ∘ h₁ ≈⟨ extendˡ eq ⟩
(l ∘ k) ∘ h₂ ∎

f∘universalₗ≈h₁ : {H : Obj} {h₁ : H ⇒ B} {h₂ : H ⇒ D} {eq : i ∘ h₁ ≈ k ∘ h₂} → f ∘ universalₗ eq ≈ h₁
f∘universalₗ≈h₁ {_} {h₁} {h₂} {eq} = unique-diagram pbᵣ g∘f∘universalₗ≈g∘h₁ i∘f∘universalₗ≈i∘h₁ where
g∘f∘universalₗ≈g∘h₁ : g ∘ f ∘ universalₗ _ ≈ g ∘ h₁
g∘f∘universalₗ≈g∘h₁ = begin
g ∘ f ∘ universalₗ _ ≈⟨ sym-assoc ⟩
(g ∘ f) ∘ universalₗ _ ≈⟨ p₁∘universal≈h₁ pbb ⟩
g ∘ h₁ ∎
i∘f∘universalₗ≈i∘h₁ : i ∘ f ∘ universalₗ _ ≈ i ∘ h₁
i∘f∘universalₗ≈i∘h₁ = begin
i ∘ f ∘ universalₗ _ ≈⟨ pullˡ ABDE ⟩
(k ∘ h) ∘ universalₗ _ ≈⟨ pullʳ (p₂∘universal≈h₂ pbb) ⟩
k ∘ h₂ ≈⟨ sym eq ⟩
i ∘ h₁ ∎

unique-diagramb : {H : Obj} {s t : H ⇒ A} → f ∘ s ≈ f ∘ t → h ∘ s ≈ h ∘ t → s ≈ t
unique-diagramb eq eq' = unique-diagram pbb (extendˡ eq) eq'