Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda
Original file line number Diff line number Diff line change
Expand Up @@ -82,12 +82,12 @@ module _ {A : Type ℓ} where
AbelienizeFreeGroup→FreeAbGroup .fst
Iso.inv (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) =
FreeAbGroup→AbelienizeFreeGroup .fst
Iso.rightInv (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) x i =
Iso.sec (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) x i =
FAGAbGroupGroupHom≡
(compGroupHom FreeAbGroup→AbelienizeFreeGroup
AbelienizeFreeGroup→FreeAbGroup)
idGroupHom (λ _ → refl) i .fst x
Iso.leftInv (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) =
Iso.ret (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) =
Abi.elimProp _ (λ _ → isset _ _)
(funExt⁻ (cong fst (freeGroupHom≡
{f = compGroupHom freeGroup→freeAbGroup FreeAbGroup→AbelienizeFreeGroup}
Expand Down Expand Up @@ -387,8 +387,8 @@ Free→ℤFin→Free (suc n) =
Iso-ℤFin-FreeAbGroup : (n : ℕ) → Iso (ℤ[Fin n ] .fst) (FAGAbGroup {A = Fin n} .fst)
Iso.fun (Iso-ℤFin-FreeAbGroup n) = ℤFin→Free n
Iso.inv (Iso-ℤFin-FreeAbGroup n) = Free→ℤFin n
Iso.rightInv (Iso-ℤFin-FreeAbGroup n) = ℤFin→Free→ℤFin n
Iso.leftInv (Iso-ℤFin-FreeAbGroup n) = Free→ℤFin→Free n
Iso.sec (Iso-ℤFin-FreeAbGroup n) = ℤFin→Free→ℤFin n
Iso.ret (Iso-ℤFin-FreeAbGroup n) = Free→ℤFin→Free n

ℤFin≅FreeAbGroup : (n : ℕ) → AbGroupIso (ℤ[Fin n ]) (FAGAbGroup {A = Fin n})
fst (ℤFin≅FreeAbGroup n) = Iso-ℤFin-FreeAbGroup n
Expand All @@ -404,7 +404,7 @@ elimPropℤFin : ∀ {ℓ} (n : ℕ)
→ ((f : _) → A f → A (-ℤ_ ∘ f))
→ (x : _) → A x
elimPropℤFin n A pr z t s u w =
subst A (Iso.leftInv (Iso-ℤFin-FreeAbGroup n) w) (help (ℤFin→Free n w))
subst A (Iso.ret (Iso-ℤFin-FreeAbGroup n) w) (help (ℤFin→Free n w))
where
help : (x : _) → A (Free→ℤFin n x)
help = ElimProp.f (pr _) t z
Expand Down
8 changes: 4 additions & 4 deletions Cubical/Algebra/AbGroup/Instances/IntMod.agda
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,8 @@ Iso.inv (fst ℤ/2[2]≅ℤ/2) x = x , cong (x +ₘ_) (+ₘ-rUnit x) ∙ x+x x
where
x+x : (x : ℤ/2 .fst) → x +ₘ x ≡ fzero
x+x = ℤ/2-elim refl refl
Iso.rightInv (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ → isProp≤) refl
Iso.leftInv (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ → isSetFin _ _) refl
Iso.sec (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ → isProp≤) refl
Iso.ret (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ → isSetFin _ _) refl
snd ℤ/2[2]≅ℤ/2 = makeIsGroupHom λ _ _ → refl

ℤ/2/2≅ℤ/2 : AbGroupIso (ℤ/2 /^ 2) ℤ/2
Expand All @@ -64,8 +64,8 @@ Iso.fun (fst ℤ/2/2≅ℤ/2) =
λ p → ⊥.rec (snotz (sym (cong fst p))))))
λ _ → refl)
Iso.inv (fst ℤ/2/2≅ℤ/2) = [_]
Iso.rightInv (fst ℤ/2/2≅ℤ/2) _ = refl
Iso.leftInv (fst ℤ/2/2≅ℤ/2) =
Iso.sec (fst ℤ/2/2≅ℤ/2) _ = refl
Iso.ret (fst ℤ/2/2≅ℤ/2) =
SQ.elimProp (λ _ → squash/ _ _) λ _ → refl
snd ℤ/2/2≅ℤ/2 = makeIsGroupHom
(SQ.elimProp (λ _ → isPropΠ λ _ → isSetFin _ _)
Expand Down
12 changes: 6 additions & 6 deletions Cubical/Algebra/AbGroup/TensorProduct.agda
Original file line number Diff line number Diff line change
Expand Up @@ -360,9 +360,9 @@ module UP (AGr : AbGroup ℓ) (BGr : AbGroup ℓ') where
(GroupHom (AGr *) (HomGroup (BGr *) C *))
Iso.fun mainIso = _
Iso.inv mainIso = invF
Iso.rightInv mainIso (f , p) = Σ≡Prop (λ _ → isPropIsGroupHom _ _)
Iso.sec mainIso (f , p) = Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt λ a → Σ≡Prop (λ _ → isPropIsGroupHom _ _) refl)
Iso.leftInv mainIso (f , p) =
Iso.ret mainIso (f , p) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt (⊗elimProp (λ _ → is-set (snd C) _ _)
(λ _ _ → refl)
Expand Down Expand Up @@ -407,8 +407,8 @@ commFun²≡id = ⊗elimProp (λ _ → ⊗squash _ _)
→ GroupIso ((A ⨂ B) *) ((B ⨂ A) *)
Iso.fun (fst ⨂-commIso) = commFun
Iso.inv (fst ⨂-commIso) = commFun
Iso.rightInv (fst ⨂-commIso) = commFun²≡id
Iso.leftInv (fst ⨂-commIso) = commFun²≡id
Iso.sec (fst ⨂-commIso) = commFun²≡id
Iso.ret (fst ⨂-commIso) = commFun²≡id
snd ⨂-commIso = makeIsGroupHom λ x y → refl

⨂-comm : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → AbGroupEquiv (A ⨂ B) (B ⨂ A)
Expand Down Expand Up @@ -478,7 +478,7 @@ module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGr
⨂assocIso : Iso (A ⨂₁ (B ⨂ C)) ((A ⨂ B) ⨂₁ C)
Iso.fun ⨂assocIso = fst assocHom⁻
Iso.inv ⨂assocIso = fst assocHom
Iso.rightInv ⨂assocIso =
Iso.sec ⨂assocIso =
⊗elimProp (λ _ → ⊗squash _ _)
(⊗elimProp (λ _ → isPropΠ (λ _ → ⊗squash _ _))
(λ a b c → refl)
Expand All @@ -487,7 +487,7 @@ module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGr
λ x y p q → cong (fst assocHom⁻) (IsGroupHom.pres· (snd assocHom) x y)
∙∙ IsGroupHom.pres· (snd assocHom⁻) (fst assocHom x) (fst assocHom y)
∙∙ cong₂ _+⊗_ p q
Iso.leftInv ⨂assocIso =
Iso.ret ⨂assocIso =
⊗elimProp (λ _ → ⊗squash _ _)
(λ a → ⊗elimProp (λ _ → ⊗squash _ _)
(λ b c → refl)
Expand Down
8 changes: 4 additions & 4 deletions Cubical/Algebra/Algebra/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -174,14 +174,14 @@ module AlgebraEquivs where
isoOnHoms : Iso (AlgebraHom B C) (AlgebraHom A C)
fun isoOnHoms g = g ∘a AlgebraEquiv→AlgebraHom f
inv isoOnHoms h = h ∘a AlgebraEquiv→AlgebraHom f⁻¹
rightInv isoOnHoms h =
sec isoOnHoms h =
Σ≡Prop
(λ h → isPropIsAlgebraHom _ (A .snd) h (C .snd))
(isoOnTypes .rightInv (h .fst))
leftInv isoOnHoms g =
(isoOnTypes .sec (h .fst))
ret isoOnHoms g =
Σ≡Prop
(λ g → isPropIsAlgebraHom _ (B .snd) g (C .snd))
(isoOnTypes .leftInv (g .fst))
(isoOnTypes .ret (g .fst))

isSetAlgebraStr : (A : Type ℓ') → isSet (AlgebraStr R A)
isSetAlgebraStr A =
Expand Down
24 changes: 12 additions & 12 deletions Cubical/Algebra/ChainComplex/Homology.agda
Original file line number Diff line number Diff line change
Expand Up @@ -136,15 +136,15 @@ module _ where
finChainComplexMap→HomologyMap m f n .fst
Iso.inv (fst (finChainComplexEquiv→HomoglogyIso m f n)) =
finChainComplexMap→HomologyMap m (invFinChainMap f) n .fst
Iso.rightInv (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
Iso.sec (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
funExt⁻ (cong fst (sym (finChainComplexMap→HomologyMapComp
(invFinChainMap (f , eqs)) f n))
∙∙ cong (λ f → fst (finChainComplexMap→HomologyMap m f n))
(finChainComplexMap≡ λ r
→ Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt (secEq (_ , eqs r))))
∙∙ cong fst (finChainComplexMap→HomologyMapId n))
Iso.leftInv (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
Iso.ret (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
funExt⁻ (cong fst (sym (finChainComplexMap→HomologyMapComp f
(invFinChainMap (f , eqs)) n))
∙∙ cong (λ f → fst (finChainComplexMap→HomologyMap m f n))
Expand Down Expand Up @@ -264,7 +264,7 @@ module _ where
chainComplexMap→HomologyMap f n .fst
Iso.inv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
chainComplexMap→HomologyMap (invChainMap (f , eqs)) n .fst
Iso.rightInv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
Iso.sec (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
funExt⁻ (cong fst (sym (chainComplexMap→HomologyMapComp
(invChainMap (f , eqs)) f n))
∙∙ cong (λ f → fst (chainComplexMap→HomologyMap f n))
Expand All @@ -273,7 +273,7 @@ module _ where
(funExt (secEq (_ , eqs r))))
∙∙ cong fst (chainComplexMap→HomologyMapId n))

Iso.leftInv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
Iso.ret (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
funExt⁻ (cong fst (sym (chainComplexMap→HomologyMapComp f
(invChainMap (f , eqs)) n))
∙∙ cong (λ f → fst (chainComplexMap→HomologyMap f n))
Expand Down Expand Up @@ -323,10 +323,10 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
(PT.map (λ {(s , t)
→ (Iso.inv (chEq₂ .fst) s)
, Σ≡Prop (λ _ → AbGroupStr.is-set (snd (chain C n)) _ _)
(sym (Iso.leftInv (chEq₁ .fst) _)
(sym (Iso.ret (chEq₁ .fst) _)
∙ cong (Iso.inv (chEq₁ .fst)) (funExt⁻ eq2 (Iso.inv (chEq₂ .fst) s))
∙ cong (Iso.inv (chEq₁ .fst) ∘ bdry D (suc n) .fst)
(Iso.rightInv (chEq₂ .fst) s)
(Iso.sec (chEq₂ .fst) s)
∙ cong (Iso.inv (chEq₁ .fst)) (cong fst t)
∙ IsGroupHom.pres· (invGroupIso chEq₁ .snd) _ _
∙ cong₂ (snd (chain C (suc n) ) .AbGroupStr._+_)
Expand All @@ -335,10 +335,10 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
where
g : _ → homology n C .fst
g (a , b) = [ Iso.inv (fst chEq₁) a
, sym (Iso.leftInv (chEq₀ .fst) _)
, sym (Iso.ret (chEq₀ .fst) _)
∙ cong (Iso.inv (chEq₀ .fst)) (funExt⁻ eq1 (Iso.inv (chEq₁ .fst) a))
∙ cong (Iso.inv (chEq₀ .fst) ∘ bdry D n .fst)
(Iso.rightInv (chEq₁ .fst) a)
(Iso.sec (chEq₁ .fst) a)
∙ cong (Iso.inv (chEq₀ .fst)) b
∙ IsGroupHom.pres1 (invGroupIso chEq₀ .snd) ]

Expand All @@ -354,16 +354,16 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
main-iso : GroupIso (homology n C) (homology n D)
Iso.fun (fst main-iso) = F
Iso.inv (fst main-iso) = G
Iso.rightInv (fst main-iso) =
Iso.sec (fst main-iso) =
elimProp (λ _ → GroupStr.is-set (homology n D .snd) _ _)
λ{(a , b)
→ cong [_] (Σ≡Prop (λ _
→ AbGroupStr.is-set (snd (chain D n)) _ _)
(Iso.rightInv (fst chEq₁) a))}
Iso.leftInv (fst main-iso) =
(Iso.sec (fst chEq₁) a))}
Iso.ret (fst main-iso) =
elimProp (λ _ → GroupStr.is-set (homology n C .snd) _ _)
λ{(a , b)
→ cong [_] (Σ≡Prop (λ _
→ AbGroupStr.is-set (snd (chain C n)) _ _)
(Iso.leftInv (fst chEq₁) a))}
(Iso.ret (fst chEq₁) a))}
snd main-iso = F-hom
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ module CalculateFreeCommAlgebraOnCoproduct (R : CommRing ℓ) (I J : Type ℓ) w
≡ Iso.inv isoR (CommAlgebra→CommRing (R [ I ⊎ J ]) , baseRingHom)
step1 i = Iso.inv isoR ((CommAlgebra→CommRing R[I⊎J]overR[I]) , ≡RingHoms i)

step2 = Iso.leftInv isoR (R [ I ⊎ J ])
step2 = Iso.ret isoR (R [ I ⊎ J ])

fst≡R[I⊎J] : cong fst ≡R[I⊎J] ≡ refl
fst≡R[I⊎J] =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -278,8 +278,8 @@ homMapIso : {R : CommRing ℓ} {I : Type ℓ''} (A : CommAlgebra R ℓ')
→ Iso (CommAlgebraHom (R [ I ]) A) (I → (fst A))
Iso.fun (homMapIso A) = evaluateAt A
Iso.inv (homMapIso A) = inducedHom A
Iso.rightInv (homMapIso A) = λ ϕ → Theory.mapRetrievable A ϕ
Iso.leftInv (homMapIso {R = R} {I = I} A) =
Iso.sec (homMapIso A) = λ ϕ → Theory.mapRetrievable A ϕ
Iso.ret (homMapIso {R = R} {I = I} A) =
λ f → Σ≡Prop (λ f → isPropIsCommAlgebraHom {M = R [ I ]} {N = A} f)
(Theory.homRetrievable A f)

Expand Down Expand Up @@ -344,7 +344,7 @@ module _ {R : CommRing ℓ} {A B : CommAlgebra R ℓ''} where
natIndHomR ψ ϕ = isoFunInjective (homMapIso B) _ _
(evaluateAt B (ψ ∘a (inducedHom A ϕ)) ≡⟨ refl ⟩
fst ψ ∘ evaluateAt A (inducedHom A ϕ) ≡⟨ refl ⟩
fst ψ ∘ ϕ ≡⟨ Iso.rightInv (homMapIso B) _ ⟩
fst ψ ∘ ϕ ≡⟨ Iso.sec (homMapIso B) _ ⟩
evaluateAt B (inducedHom B (fst ψ ∘ ϕ)) ∎)

{-
Expand Down
4 changes: 2 additions & 2 deletions Cubical/Algebra/CommAlgebra/AsModule/Instances/Initial.agda
Original file line number Diff line number Diff line change
Expand Up @@ -117,12 +117,12 @@ module _ (R : CommRing ℓ) where
asIso : Iso (fst A) (fst initialCAlg)
Iso.fun asIso = fst to
Iso.inv asIso = fst from
Iso.rightInv asIso =
Iso.sec asIso =
λ x i → cong
fst
(isContr→isProp (initialityContr initialCAlg) (to ∘a from) (idCAlgHom initialCAlg))
i x
Iso.leftInv asIso =
Iso.ret asIso =
λ x i → cong
fst
(isContr→isProp (isInitial A) (from ∘a to) (idCAlgHom A))
Expand Down
4 changes: 2 additions & 2 deletions Cubical/Algebra/CommAlgebra/AsModule/Localisation.agda
Original file line number Diff line number Diff line change
Expand Up @@ -211,8 +211,8 @@ module AlgLocTwoSubsets (R' : CommRing ℓ)
IsoS₁⁻¹RS₂⁻¹R : Iso S₁⁻¹R S₂⁻¹R
Iso.fun IsoS₁⁻¹RS₂⁻¹R = fst χ₁
Iso.inv IsoS₁⁻¹RS₂⁻¹R = fst χ₂
Iso.rightInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₁∘χ₂≡id)
Iso.leftInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₂∘χ₁≡id)
Iso.sec IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₁∘χ₂≡id)
Iso.ret IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₂∘χ₁≡id)

isContrS₁⁻¹R≅S₂⁻¹R : isContr (CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg)
isContrS₁⁻¹R≅S₂⁻¹R = center , uniqueness
Expand Down
8 changes: 4 additions & 4 deletions Cubical/Algebra/CommAlgebra/AsModule/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -139,8 +139,8 @@ module CommAlgChar (R : CommRing ℓ) {ℓ' : Level} where
CommAlgIso : Iso (CommAlgebra R ℓ') CommRingWithHom
fun CommAlgIso = fromCommAlg
inv CommAlgIso = toCommAlg
rightInv CommAlgIso = CommRingWithHomRoundTrip
leftInv CommAlgIso = CommAlgRoundTrip
sec CommAlgIso = CommRingWithHomRoundTrip
ret CommAlgIso = CommAlgRoundTrip

open IsCommRingHom

Expand Down Expand Up @@ -301,8 +301,8 @@ contrCommAlgebraHom→contrCommAlgebraEquiv σ contrHom x y = σEquiv ,
σIso : Iso ⟨ σ x ⟩ ⟨ σ y ⟩
fun σIso = fst χ₁
inv σIso = fst χ₂
rightInv σIso = funExt⁻ (cong fst χ₁∘χ₂≡id)
leftInv σIso = funExt⁻ (cong fst χ₂∘χ₁≡id)
sec σIso = funExt⁻ (cong fst χ₁∘χ₂≡id)
ret σIso = funExt⁻ (cong fst χ₂∘χ₁≡id)

σEquiv : CommAlgebraEquiv (σ x) (σ y)
fst σEquiv = isoToEquiv σIso
Expand Down
4 changes: 2 additions & 2 deletions Cubical/Algebra/CommAlgebra/Instances/Initial.agda
Original file line number Diff line number Diff line change
Expand Up @@ -80,12 +80,12 @@ module _ (R : CommRing ℓ) where
asIso : Iso ⟨ A ⟩ₐ ⟨ initialCAlg ⟩ₐ
Iso.fun asIso = fst to
Iso.inv asIso = fst from
Iso.rightInv asIso =
Iso.sec asIso =
λ x i → cong
fst
(isContr→isProp (initialityContr initialCAlg) (to ∘ca from) (idCAlgHom initialCAlg))
i x
Iso.leftInv asIso =
Iso.ret asIso =
λ x i → cong
fst
(isContr→isProp (isInitial A) (from ∘ca to) (idCAlgHom A))
Expand Down
4 changes: 2 additions & 2 deletions Cubical/Algebra/CommAlgebra/Localisation.agda
Original file line number Diff line number Diff line change
Expand Up @@ -204,8 +204,8 @@ module AlgLocTwoSubsets (R' : CommRing ℓ)
IsoS₁⁻¹RS₂⁻¹R : Iso S₁⁻¹R S₂⁻¹R
Iso.fun IsoS₁⁻¹RS₂⁻¹R = ⟨ χ₁ ⟩ₐ→
Iso.inv IsoS₁⁻¹RS₂⁻¹R = ⟨ χ₂ ⟩ₐ→
Iso.rightInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong ⟨_⟩ₐ→ χ₁∘χ₂≡id)
Iso.leftInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong ⟨_⟩ₐ→ χ₂∘χ₁≡id)
Iso.sec IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong ⟨_⟩ₐ→ χ₁∘χ₂≡id)
Iso.ret IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong ⟨_⟩ₐ→ χ₂∘χ₁≡id)

isContrS₁⁻¹R≅S₂⁻¹R : isContr (CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg)
isContrS₁⁻¹R≅S₂⁻¹R = center , uniqueness
Expand Down
6 changes: 3 additions & 3 deletions Cubical/Algebra/CommAlgebra/Polynomials.agda
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,8 @@ homMapIso : {R : CommRing ℓ} {I : Type ℓ''} (A : CommAlgebra R ℓ')
→ Iso (CommAlgebraHom (R [ I ]) A) (I → (fst A))
Iso.fun (homMapIso A) = evaluateAt A
Iso.inv (homMapIso A) = inducedHom A
Iso.rightInv (homMapIso A) = λ ϕ → Theory.mapRetrievable A ϕ
Iso.leftInv (homMapIso {R = R} {I = I} A) =
Iso.sec (homMapIso A) = λ ϕ → Theory.mapRetrievable A ϕ
Iso.ret (homMapIso {R = R} {I = I} A) =
λ f → Σ≡Prop (λ f → isPropIsCommAlgebraHom {M = R [ I ]} {N = A} f)
(Theory.homRetrievable A f)

Expand Down Expand Up @@ -125,7 +125,7 @@ module _ {R : CommRing ℓ} {A B : CommAlgebra R ℓ''} where
natIndHomR ψ ϕ = isoFunInjective (homMapIso B) _ _
(evaluateAt B (ψ ∘a (inducedHom A ϕ)) ≡⟨ refl ⟩
fst ψ ∘ evaluateAt A (inducedHom A ϕ) ≡⟨ refl ⟩
fst ψ ∘ ϕ ≡⟨ Iso.rightInv (homMapIso B) _ ⟩
fst ψ ∘ ϕ ≡⟨ Iso.sec (homMapIso B) _ ⟩
evaluateAt B (inducedHom B (fst ψ ∘ ϕ)) ∎)

{-
Expand Down
6 changes: 3 additions & 3 deletions Cubical/Algebra/CommRing/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,7 @@ module _ where

injCommRingIso : {R : CommRing ℓ} {S : CommRing ℓ'} (f : CommRingIso R S)
→ (x y : R .fst) → f .fst .fun x ≡ f .fst .fun y → x ≡ y
injCommRingIso f x y h = sym (f .fst .leftInv x) ∙∙ cong (f .fst .inv) h ∙∙ f .fst .leftInv y
injCommRingIso f x y h = sym (f .fst .ret x) ∙∙ cong (f .fst .inv) h ∙∙ f .fst .ret y

module _ where
open RingEquivs
Expand Down Expand Up @@ -342,8 +342,8 @@ module CommRingUAFunctoriality where
, commringstr (q0 i) (q1 i) (r+ i) (r· i) (s i) (t i)
inv theIso x = cong ⟨_⟩ x , cong (0r ∘ snd) x , cong (1r ∘ snd) x
, cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (isCommRing ∘ snd) x
rightInv theIso _ = refl
leftInv theIso _ = refl
sec theIso _ = refl
ret theIso _ = refl

caracCommRing≡ : {A B : CommRing ℓ} (p q : A ≡ B) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q
caracCommRing≡ {A = A} {B = B} p q P =
Expand Down
8 changes: 4 additions & 4 deletions Cubical/Algebra/CommRing/Univalence.agda
Original file line number Diff line number Diff line change
Expand Up @@ -58,16 +58,16 @@ fst (fun (CommRingEquivIsoCommRingIso R S) e) = equivToIso (e .fst)
snd (fun (CommRingEquivIsoCommRingIso R S) e) = e .snd
fst (inv (CommRingEquivIsoCommRingIso R S) e) = isoToEquiv (e .fst)
snd (inv (CommRingEquivIsoCommRingIso R S) e) = e .snd
rightInv (CommRingEquivIsoCommRingIso R S) (e , he) =
sec (CommRingEquivIsoCommRingIso R S) (e , he) =
Σ≡Prop (λ e → isPropIsCommRingHom (snd R) (e .fun) (snd S))
rem
where
rem : equivToIso (isoToEquiv e) ≡ e
fun (rem i) x = fun e x
inv (rem i) x = inv e x
rightInv (rem i) b j = CommRingStr.is-set (snd S) (fun e (inv e b)) b (rightInv e b) (rightInv e b) i j
leftInv (rem i) a j = CommRingStr.is-set (snd R) (inv e (fun e a)) a (retEq (isoToEquiv e) a) (leftInv e a) i j
leftInv (CommRingEquivIsoCommRingIso R S) e =
sec (rem i) b j = CommRingStr.is-set (snd S) (fun e (inv e b)) b (sec e b) (sec e b) i j
ret (rem i) a j = CommRingStr.is-set (snd R) (inv e (fun e a)) a (retEq (isoToEquiv e) a) (ret e a) i j
ret (CommRingEquivIsoCommRingIso R S) e =
Σ≡Prop (λ e → isPropIsCommRingHom (snd R) (e .fst) (snd S))
(equivEq refl)

Expand Down
4 changes: 2 additions & 2 deletions Cubical/Algebra/DirectSum/Equiv-DSHIT-DSFun.agda
Original file line number Diff line number Diff line change
Expand Up @@ -416,6 +416,6 @@ module _
is : Iso (⊕HIT ℕ G Gstr) (⊕Fun G Gstr)
fun is = ⊕HIT→⊕Fun
Iso.inv is = ⊕Fun→⊕HIT
rightInv is = e-sect
leftInv is = e-retr
sec is = e-sect
ret is = e-retr
snd Equiv-DirectSum = makeIsGroupHom ⊕HIT→⊕Fun-pres+
4 changes: 2 additions & 2 deletions Cubical/Algebra/GradedRing/Instances/TrivialGradedRing.agda
Original file line number Diff line number Diff line change
Expand Up @@ -101,11 +101,11 @@ module _
inv is = DS-Rec-Set.f _ _ _ _ is-set
0r (λ {zero a → a ; (suc k) a → 0r }) _+_ +Assoc +IdR +Comm
(λ { zero → refl ; (suc k) → refl}) (λ {zero a b → refl ; (suc n) a b → +IdR _})
rightInv is = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
sec is = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
(base-neutral _)
(λ { zero a → refl ; (suc k) a → base-neutral _ ∙ sym (base-neutral _)} )
λ {U V} ind-U ind-V → sym (base-add _ _ _) ∙ cong₂ _add_ ind-U ind-V
leftInv is = λ _ → refl
ret is = λ _ → refl
snd equivRing = makeIsRingHom
-- issue agda have trouble infering the Idx, G, Gstr
{R = ARing}
Expand Down
Loading