Releases: lululxvi/deepxde
Releases · lululxvi/deepxde
DeepXDE v1.14.0
Areas of improvement
dde.gradientssupports 3D outputs- Support MAE for all backends
- Backend PyTorch: Add L1 and L1+L2 regularizers
- Backend PyTorch: DeepONet supports regularization
- Backend Pytorch: Add Apple MPS GPU support
- Backend JAX: FNN supports regularization
- Backend JAX: Fix external variable initialization
New APIs
- Support mixed precision
Thanks to all the contributors to this release!
@g-w1 @lululxvi @Jerry-Jzy @KangyuWeng @vl-dud @bonneted @kyouma
DeepXDE v1.13.2
Areas of improvement
- Backend paddle: Support
dde.nn.MfNN - Backend paddle: Support prim to accelerate running
Thanks to all the contributors to this release!
DeepXDE v1.13.1
This is a bugfix release, fixing the bug of dde.data.PDEOperatorCartesianProd introduced in v1.13.0.
We also support Python 3.12 and require PyTorch>=2.0.0.
Thanks to all the contributors to this release!
DeepXDE v1.13.0
Areas of improvement
- Refactor and improve regularizers for backends TensorFlow 1.x/2.x and paddle
- Improve compatibility with NumPy 2
dde.model.trainanddde.model.compilesupport verbose- Backend PyTorch: Fix L2 regularizers for
external_trainable_variables - Backend paddle:
FNNsupports regularization and dropout
New APIs
- Backend PyTorch: Add a new optimizer NNCG
Thanks to all the contributors to this release!
@lululxvi @vl-dud @KangyuWeng @pratikrathore8 @lijialin03 @Jerry-Jzy
DeepXDE v1.12.2
Areas of improvement
- Improve compatibility with NumPy 2
- Bug fix:
dde.data.QuadrupleCartesianProd - Backend TensorFlow 1.x: Improve DeepONet
- Backend PyTorch: FNN supports regularization
Thanks to all the contributors to this release!
DeepXDE v1.12.1
Areas of improvement
- Add
clear()for forward-mode autodiff to prevent memory leak - Tensorflow 1.x backend:
DeepONetsupports layer-by-layer dropout rate setting - Bug fix:
SingleOutputStrategyhas unnecessary error checking
New APIs
dde.geometry.Hypercubesupportsuniform_boundary_points
Thanks to all the contributors to this release!
DeepXDE v1.12.0
Areas of improvement
EarlyStoppingcallback supports a new argumentstart_from_epoch- Backend TensorFlow v1/v2: Fix many codes to match the new TensorFlow APIs and Keras 3
- Backend Tensorflow v1:
DeepONetandDeepONetCartesianProdsupport dropout - Backend PyTorch: Fix the L-BFGS code to support PyTorch 2.x
- Backend Paddle: Fix the L-BFGS code
- Backend Paddle:
DeepONetCartesianProdsupports multiple outputs - Backend JAX: Support callback
VariableValue - Documentation improvements
New APIs
dde.data.PDEOperatorsupportsresample_train_points
Thanks to all the contributors to this release!
@bonneted @vnikoofard @vl-dud @tjboise @HydrogenSulfate @agniv-the-marker @lululxvi @lijialin03 @DecoderLiu @anranjiao
DeepXDE v1.11.1
Areas of improvement
- Add 2D interface boundary condition
dde.icbc.Interface2DBC - Backend JAX: Support loss weights
- Backend JAX: Support
dde.nn.PFNN - Backend JAX: Support
dde.callbacks.OperatorPredictor - Backend JAX: Fix input and output transform
- Add new examples in docs
Thanks to all the contributors to this release!
@lululxvi @kuangdai @HydrogenSulfate @bonneted @jdellag @vl-dud @SebastianCobaise
DeepXDE v1.11.0
- DeepXDE stops the support of Python 3.8 from this release.
- Many exciting new functions of automatic differentiation (AD) are added.
Areas of improvement
dde.gradsupports forward-mode AD for backends TensorFlow 1.x and 2.x, PyTorch, JAX. Usedde.config.set_default_autodiffto select.dde.grad.jacobianallows bothiandjare None- Backend PyTorch: DeepONet supports multiple outputs
New APIs
- Support new AD method in
dde.zcs: Zero Coordinate Shift (ZCS), see https://arxiv.org/abs/2311.00860
DeepXDE v1.10.1
Areas of improvement
- Refactor
dde.gradmodule - Backend TensorFlow 1.x and 2.x:
DeepONet&DeepONetCartesianProdsupport multiple outputs - Backend TensorFlow: Add regularization to
DeepONet - Backend PyTorch: Bug fix of
MIONetinput_transform - Backend JAX: Support more PINN examples
- Backend JAX: Bug fix of
dde.grad