Releases: lululxvi/deepxde
Releases · lululxvi/deepxde
DeepXDE v0.13.6
Areas of improvement
- Bug fix:
Model.predict()works for DeepONet
DeepXDE v0.13.5
Areas of improvement
- TensorFlow 2.x and PyTorch support loss_weights
- Improve L-BFGS for TensorFLow 2.x and PyTorch
Geometry.random_boundary_points()doesn't sample corner points
New APIs
- Add
dde.optimizers.set_LBFGS_options()
DeepXDE v0.13.4
Areas of improvement
- Backend TensorFlow 2.x supports L-BFGS via TFP
- Backend PyTorch supports L-BFGS
- Backend PyTorch uses GPU by default, if available
- Improve BC/IC performance for backend PyTorch
New APIs
- Add
dde.Variablefor inverse problems
DeepXDE v0.13.3
- Backend PyTorch supports PDE inverse problems
Areas of improvement
- Refactor some parts of
Model - Bug fix for backend TensorFlow 2.x and PyTorch
API changes
- Rename
dde.mapstodde.nnto be more explicit
DeepXDE v0.13.2
- Backend PyTorch supports PDE forward problems
API changes
- Refactor uncertainty via MC dropout as the callback
DropoutUncertainty; remove "uncertainty" argument fromModel.train().
DeepXDE v0.13.1
DeepXDE supports PyTorch backend for function approximation.
Areas of improvement
- Backend TensorFlow supports auxiliary variables
New APIs
- Add
dde.config.set_default_float()anddde.config.default_float()
DeepXDE v0.13.0
DeepXDE now supports two backends: TensorFlow 1.x (tensorflow.compat.v1 in TensorFlow 2.x) and TensorFlow 2.x. For how to select one, see Working with different backends.
Areas of improvement
- Many modules are refactored to better support multiple backends.
- Support skopt>=0.9
- Documentation improvements
API changes
- Rename
dde.data.Functodde.data.Function
New APIs
- Add
Hypercube.random_boundary_points()
DeepXDE v0.12.0
This release is mainly about DeepONet.
API changes
- Rename
OpNNtoDeepONet - Rename
OpDataSettoTriple
New APIs
- Add
dde.__version__ - Add
data.TripleCartesianProd,maps.DeepONetCartesianProd, andmaps.FourierDeepONetCartesianProd - Add new metric:
mean_l2_relative_error
Areas of improvement
- Bug fix: change 'sobol' to 'Sobol'
DeepXDE v0.11.2
Areas of improvement
- Add Multi-scale Fourier Feature Neural Networks:
MsFFNandSTMsFFN PDEsupports more sampling methods: LHS, Halton, HammersleyDeepONetsupports input_transform and output_transformPointSetsupports default valueHypercube.boundary_normal()returns averaged normal for vertices- Speedup
Polygon.random_points()
DeepXDE v0.11.1
Areas of improvement
FNNsupports argumentsuse_biasandkernel_constraint, and layer normalization- Change L-BFGS option
gtolfrom 1e-5 to 1e-8 - Improve
saveplot
New APIs
- Add a new Data
Constraint - Add metric
mean_squared_error